Multimodal remote sensing image registration aligns images from different sensors for data fusion and analysis. However, current methods often fail to extract modality-invariant features when aligning image pairs with large nonlinear radiometric differences. To address this issues, we propose OSDM-MReg, a novel multimodal image registration framework based image-to-image translation to eliminate the gap of multimodal images. Firstly, we propose a novel one-step unaligned target-guided conditional denoising diffusion probabilistic models(UTGOS-CDDPM)to translate multimodal images into a unified domain. In the inference stage, traditional conditional DDPM generate translated source image by a large number of iterations, which severely slows down the image registration task. To address this issues, we use the unaligned traget image as a condition to promote the generation of low-frequency features of the translated source image. Furthermore, during the training stage, we add the inverse process of directly predicting the translated image to ensure that the translated source image can be generated in one step during the testing stage. Additionally, to supervised the detail features of translated source image, we propose a new perceptual loss that focuses on the high-frequency feature differences between the translated and ground-truth images. Finally, a multimodal multiscale image registration network (MM-Reg) fuse the multimodal feature of the unimodal images and multimodal images by proposed multimodal feature fusion strategy. Experiments demonstrate superior accuracy and efficiency across various multimodal registration tasks, particularly for SAR-optical image pairs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
30+阅读 · 2019年3月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员