A major research area in discrete geometry is to consider the best way to partition the $d$-dimensional Euclidean space $\mathbb{R}^d$ under various quality criteria. In this paper we introduce a new type of space partitioning that is motivated by the problem of rounding noisy measurements from the continuous space $\mathbb{R}^d$ to a discrete subset of representative values. Specifically, we study partitions of $\mathbb{R}^d$ into bounded-size tiles colored by one of $k$ colors, such that tiles of the same color have a distance of at least $t$ from each other. Such tilings allow for \emph{error-resilient} rounding, as two points of the same color and distance less than $t$ from each other are guaranteed to belong to the same tile, and thus, to be rounded to the same point. The main problem we study in this paper is characterizing the achievable tradeoffs between the number of colors $k$ and the distance $t$, for various dimensions $d$. On the qualitative side, we show that in $\mathbb{R}^d$, using $k=d+1$ colors is both sufficient and necessary to achieve $t>0$. On the quantitative side, we achieve numerous upper and lower bounds on $t$ as a function of $k$. In particular, for $d=3,4,8,24$, we obtain sharp asymptotic bounds on $t$, as $k \to \infty$. We obtain our results with a variety of techniques including isoperimetric inequalities, the Brunn-Minkowski theorem, sphere packing bounds, Bapat's connector-free lemma, and \v{C}ech cohomology.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
24+阅读 · 2022年2月4日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
24+阅读 · 2022年2月4日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员