In context of the Wolfram Physics Project, a certain class of abstract rewrite systems known as "multiway systems" have played an important role in discrete models of spacetime and quantum mechanics. However, as abstract mathematical entities, these rewrite systems are interesting in their own right. This paper undertakes the effort to establish computational properties of multiway systems. Specifically, we investigate growth rates and growth classes of string-based multiway systems. After introducing the concepts of "growth functions", "growth rates" and "growth classes" to quantify a system's state-space growth over "time" (successive steps of evolution) on different levels of precision, we use them to show that multiway systems can, in a specific sense, grow slower than all computable functions while never exceeding the growth rate of exponential functions. In addition, we start developing a classification scheme for multiway systems based on their growth class. Furthermore, we find that multiway growth functions are not trivially regular but instead "computationally diverse", meaning that they are capable of computing or approximating various commonly encountered mathematical functions. We discuss several implications of these properties as well as their physical relevance. Apart from that, we present and exemplify methods for explicitly constructing multiway systems to yield desired growth functions.


翻译:在沃尔夫拉姆物理项目的背景下,被称为“多路系统”的某类抽象重写系统在不同空间时间和量子力学的离散模型中发挥了重要作用。 然而,作为抽象数学实体,这些重写系统本身很有意义。 本文致力于建立多路系统的计算特性。 具体地说, 我们调查了基于字符串的多路系统的增长率和增长类别。 在引入了“ 增长功能”、“ 增长率” 和“ 增长等级” 的概念, 以量化系统在不同精确度的“ 时间”( 演化的后继步骤) 上的国家空间增长, 我们用它们来表明, 以具体意义上来说, 这些多路系统可以比所有可计算功能慢, 却从未超过指数函数的增长率。 此外, 我们开始根据其增长等级为多路系统制定一个分类方案。 此外, 我们发现, 多路增长功能不是微不足道的, 而是“ 解释”, 意味着它们能够计算或辅助各种常见数学功能。 我们讨论这些特性的一些影响, 以及从我们所期望的物理相关性, 以及从构建这些功能的多重相关性。

0
下载
关闭预览

相关内容

Effective.Modern.C++ 中英文版,334页pdf
专知会员服务
66+阅读 · 2020年11月4日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
107+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
100+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
272+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月30日
iLQR for Piecewise-Smooth Hybrid Dynamical Systems
Arxiv
0+阅读 · 2021年3月26日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员