Self-supervised learning (especially contrastive learning) has attracted great interest due to its tremendous potentials in learning discriminative representations in an unsupervised manner. Despite the acknowledged successes, existing contrastive learning methods suffer from very low learning efficiency, e.g., taking about ten times more training epochs than supervised learning for comparable recognition accuracy. In this paper, we discover two contradictory phenomena in contrastive learning that we call under-clustering and over-clustering problems, which are major obstacles to learning efficiency. Under-clustering means that the model cannot efficiently learn to discover the dissimilarity between inter-class samples when the negative sample pairs for contrastive learning are insufficient to differentiate all the actual object categories. Over-clustering implies that the model cannot efficiently learn the feature representation from excessive negative sample pairs, which enforces the model to over-cluster samples of the same actual categories into different clusters. To simultaneously overcome these two problems, we propose a novel self-supervised learning framework using a median triplet loss. Precisely, we employ a triplet loss tending to maximize the relative distance between the positive pair and negative pairs to address the under-clustering problem; and we construct the negative pair by selecting the negative sample of a median similarity score from all negative samples to avoid the over-clustering problem, guaranteed by the Bernoulli Distribution model. We extensively evaluate our proposed framework in several large-scale benchmarks (e.g., ImageNet, SYSU-30k, and COCO). The results demonstrate the superior performance (e.g., the learning efficiency) of our model over the latest state-of-the-art methods by a clear margin. Codes available at: https://github.com/wanggrun/triplet.


翻译:自我监督的学习(尤其是对比式学习)引起了极大的兴趣,因为它在以不受监督的方式学习歧视性表现方面有着巨大的潜力。尽管取得了公认的成功,但现有的对比式学习方法却受到非常低的学习效率的影响,例如,为了可比的承认准确性,比监督的学习要多大约十倍于受监督的训练时代。在本文件中,我们发现两个相互矛盾的现象,即我们称之为集群不足和集群过多的问题,这是学习效率的主要障碍。分组不足意味着模型无法有效地学会发现不同类间样本之间的差异,而对比式的高级学习不足以区分所有实际对象类别。超集中式学习方法意味着模型无法有效地从过多的负式抽样中学习特征代表,而将模型应用于相同类别中的超集束样本,同时克服这两个问题,我们建议采用一个新的自我监督的模型学习框架,使用中位的三分位流损失。 确切地说,我们采用三重损失的方式,尽量扩大正式对正对比和负式的高级学习方法,通过大规模的样本学习,我们从负式的样本到下层的样本中进行。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
72+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
53+阅读 · 2019年12月22日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【泡泡一分钟】基于视频修复的时空转换网络
泡泡机器人SLAM
5+阅读 · 2018年12月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
7+阅读 · 2018年5月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【泡泡一分钟】基于视频修复的时空转换网络
泡泡机器人SLAM
5+阅读 · 2018年12月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员