The goal of active learning is to achieve the same accuracy achievable by passive learning, while using much fewer labels. Exponential savings in terms of label complexity have been proved in very special cases, but fundamental lower bounds show that such improvements are impossible in general. This suggests a need to explore alternative goals for active learning. Learning with abstention is one such alternative. In this setting, the active learning algorithm may abstain from prediction and incur an error that is marginally smaller than random guessing. We develop the first computationally efficient active learning algorithm with abstention. Our algorithm provably achieves $\mathsf{polylog}(\frac{1}{\varepsilon})$ label complexity, without any low noise conditions. Such performance guarantee reduces the label complexity by an exponential factor, relative to passive learning and active learning that is not allowed to abstain. Furthermore, our algorithm is guaranteed to only abstain on hard examples (where the true label distribution is close to a fair coin), a novel property we term \emph{proper abstention} that also leads to a host of other desirable characteristics (e.g., recovering minimax guarantees in the standard setting, and avoiding the undesirable ``noise-seeking'' behavior often seen in active learning). We also provide novel extensions of our algorithm that achieve \emph{constant} label complexity and deal with model misspecification.


翻译:积极学习的目标是通过被动学习实现同样的准确性,同时使用少得多的标签。 在非常特殊的情况下,在标签复杂程度方面可以节省成本,但基本下限显示,这种改进是不可能的。这表明需要探索积极学习的替代目标。 以弃权方式学习是这种选择之一。 在这种环境下,积极学习算法可能放弃预测,并产生一个比随机猜测略小一点的错误。 我们开发了第一个计算高效的积极学习算法而弃权。 我们的算法可以做到标签复杂程度${mathsfs{polylog}(frac{1unt- varepslon}),而没有任何低噪声条件。 这种性能保证通过指数性因素降低标签的复杂性,相对于不允许弃权的被动学习和积极学习。 此外,我们的算法保证只对硬例子(如果真正的标签分布接近于一个公平的硬硬币) 、 我们称为 emph{ proper 投弃权] 的新型属性。 我们的算法还可以带来其他可取的特性(例如, 恢复迷卡保证在标准设置中经常提供不可取的扩展行为) 并避免我们不受欢迎的演算。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月21日
Arxiv
0+阅读 · 2022年11月17日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员