As an essential component of dialogue systems, multi-turn response selection aims to pick out the optimal response among a set of candidates to improve the dialogue fluency. In this paper, we investigate three problems of current response selection approaches, especially for generation-based conversational agents: (i) Existing approaches are often formulated as a sentence scoring problem, which does not consider relationships between responses. (ii) Existing models tend to select undesirable candidates that have large overlaps with the dialogue history. (iii) Negative instances in training are mainly constructed by random sampling from the corpus, whereas generated candidates in practice typically have a closer distribution. To address the above problems, we create a new dataset called ConvAI2+ and propose a new response selector called Global-Selector. Experimental results show that Global-Selector trained on ConvAI2+ have noticeable improvements in both accuracy and inference speed.


翻译:作为对话系统的一个基本组成部分,多转反应选择的目的是在一组候选人中选择最佳反应,以提高对话的流畅度。我们在本文件中调查了当前反应选择方法的三个问题,特别是针对以一代人为基础的对话代理人:(一) 现有办法往往作为一种评分问题拟订,其中不考虑答复之间的关系。 (二) 现有模式往往选择与对话历史有很大重叠的不受欢迎的候选人。 (三) 培训中的负面事例主要通过随机抽样来构建,而实际产生的候选人通常分布更为接近。为了解决上述问题,我们创建了一个称为ConvAI2+的新数据集,并提出一个新的反应选择者,称为全球选择者。实验结果显示,接受ConvAI2+培训的全球选择者在准确性和推断速度上都有明显改善。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
AI界的State of the Art都在这里了
机器之心
12+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员