Differentially private stochastic gradient descent (DP-SGD) has been instrumental in privately training deep learning models by providing a framework to control and track the privacy loss incurred during training. At the core of this computation lies a subsampling method that uses a privacy amplification lemma to enhance the privacy guarantees provided by the additive noise. Fixed size subsampling is appealing for its constant memory usage, unlike the variable sized minibatches in Poisson subsampling. It is also of interest in addressing class imbalance and federated learning. However, the current computable guarantees for fixed-size subsampling are not tight and do not consider both add/remove and replace-one adjacency relationships. We present a new and holistic R{\'e}nyi differential privacy (RDP) accountant for DP-SGD with fixed-size subsampling without replacement (FSwoR) and with replacement (FSwR). For FSwoR we consider both add/remove and replace-one adjacency. Our FSwoR results improves on the best current computable bound by a factor of $4$. We also show for the first time that the widely-used Poisson subsampling and FSwoR with replace-one adjacency have the same privacy to leading order in the sampling probability. Accordingly, our work suggests that FSwoR is often preferable to Poisson subsampling due to constant memory usage. Our FSwR accountant includes explicit non-asymptotic upper and lower bounds and, to the authors' knowledge, is the first such analysis of fixed-size RDP with replacement for DP-SGD. We analytically and empirically compare fixed size and Poisson subsampling, and show that DP-SGD gradients in a fixed-size subsampling regime exhibit lower variance in practice in addition to memory usage benefits.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员