Large Language Models (LLMs) such as GPT, LLaMA, and Claude achieve remarkable performance in text generation but remain opaque in their decision-making processes, limiting trust and accountability in high-stakes applications. We present gSMILE (generative SMILE), a model-agnostic, perturbation-based framework for token-level interpretability in LLMs. Extending the SMILE methodology, gSMILE uses controlled prompt perturbations, Wasserstein distance metrics, and weighted linear surrogates to identify input tokens with the most significant impact on the output. This process enables the generation of intuitive heatmaps that visually highlight influential tokens and reasoning paths. We evaluate gSMILE across leading LLMs (OpenAI's gpt-3.5-turbo-instruct, Meta's LLaMA 3.1 Instruct Turbo, and Anthropic's Claude 2.1) using attribution fidelity, attribution consistency, attribution stability, attribution faithfulness, and attribution accuracy as metrics. Results show that gSMILE delivers reliable human-aligned attributions, with Claude 2.1 excelling in attention fidelity and GPT-3.5 achieving the highest output consistency. These findings demonstrate gSMILE's ability to balance model performance and interpretability, enabling more transparent and trustworthy AI systems.


翻译:诸如GPT、LLaMA和Claude等大语言模型在文本生成方面取得了显著性能,但其决策过程仍然不透明,限制了在高风险应用中的可信度与问责性。本文提出gSMILE(生成式SMILE),一种与模型无关、基于扰动的框架,用于实现大语言模型的词元级可解释性。gSMILE扩展了SMILE方法学,通过受控提示扰动、Wasserstein距离度量和加权线性替代模型来识别对输出影响最显著的输入词元。该过程能够生成直观的热力图,以可视化方式突出显示有影响力的词元与推理路径。我们使用归因保真度、归因一致性、归因稳定性、归因忠实度和归因准确性作为评估指标,在主流大语言模型(OpenAI的gpt-3.5-turbo-instruct、Meta的LLaMA 3.1 Instruct Turbo以及Anthropic的Claude 2.1)上对gSMILE进行了评估。结果表明,gSMILE能提供可靠且与人类认知对齐的归因分析,其中Claude 2.1在注意力保真度方面表现突出,而GPT-3.5实现了最高的输出一致性。这些发现证明了gSMILE在平衡模型性能与可解释性方面的能力,有助于构建更透明、更可信的人工智能系统。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2024年4月16日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
12+阅读 · 2024年4月16日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
11+阅读 · 2018年4月8日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员