Unpaired 3D object completion aims to predict a complete 3D shape from an incomplete input without knowing the correspondence between the complete and incomplete shapes. In this paper, we propose the novel KTNet to solve this task from the new perspective of knowledge transfer. KTNet elaborates a teacher-assistant-student network to establish multiple knowledge transfer processes. Specifically, the teacher network takes complete shape as input and learns the knowledge of complete shape. The student network takes the incomplete one as input and restores the corresponding complete shape. And the assistant modules not only help to transfer the knowledge of complete shape from the teacher to the student, but also judge the learning effect of the student network. As a result, KTNet makes use of a more comprehensive understanding to establish the geometric correspondence between complete and incomplete shapes in a perspective of knowledge transfer, which enables more detailed geometric inference for generating high-quality complete shapes. We conduct comprehensive experiments on several datasets, and the results show that our method outperforms previous methods of unpaired point cloud completion by a large margin.
翻译:3D 对象完成 旨在从不完整的输入中预测完整的 3D 形状, 而不理解完整和不完整的形状之间的对应关系。 在本文中, 我们建议使用新的 KTNet 来从知识转让的新角度来解决这个问题。 KTNet 精心设计了教师- 助理学生网络, 以建立多种知识转让过程。 具体地说, 教师网络作为输入而完整地形状, 并学习完整的形状的知识。 学生网络将不完整的形状作为输入, 并恢复相应的完整形状。 辅助模块不仅有助于将完整的形状的知识从教师转移到学生, 而且还能判断学生网络的学习效果。 因此, KTNet 利用更全面的理解来从知识转让的角度来建立完整和不完整形状之间的几何对应关系, 从而能够为生成高质量的完整形状提供更详细的几何推法。 我们在几个数据集上进行了全面实验, 结果显示, 我们的方法超越了以前在大范围内完成未定位点云的方法。