题目

知识图谱的生成式对抗零样本关系学习:Generative Adversarial Zero-Shot Relational Learning for Knowledge Graphs

简介

大规模知识图谱(KGs)在当前的信息系统中显得越来越重要。为了扩大知识图的覆盖范围,以往的知识图完成研究需要为新增加的关系收集足够的训练实例。本文考虑一种新的形式,即零样本学习,以摆脱这种繁琐的处理,对于新增加的关系,我们试图从文本描述中学习它们的语义特征,从而在不见实例的情况下识别出看不见的关系。为此,我们利用生成性对抗网络(GANs)来建立文本与知识边缘图域之间的联系:生成器学习仅用有噪声的文本描述生成合理的关系嵌入。在这种背景下,零样本学习自然转化为传统的监督分类任务。从经验上讲,我们的方法是模型不可知的,可以应用于任何版本的KG嵌入,并在NELL和Wikidataset上产生性能改进。

作者 Pengda Qin,Xin Wang,Wenhu Chen,Chunyun Zhang,Weiran Xu1William Yang Wang

成为VIP会员查看完整内容
0
37

相关内容

知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。 知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。它能为学科研究提供切实的、有价值的参考。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

摘要

图神经网络(GNNs)已被证明在建模图结构的数据方面是强大的。然而,训练GNN通常需要大量指定任务的标记数据,获取这些数据的成本往往非常高。减少标记工作的一种有效方法是在未标记数据上预训练一个具有表达能力的GNN模型,并进行自我监督,然后将学习到的模型迁移到只有少量标记的下游任务中。在本文中,我们提出了GPT-GNN框架,通过生成式预训练来初始化GNN。GPT-GNN引入了一个自监督属性图生成任务来预训练一个GNN,使其能够捕获图的结构和语义属性信息。我们将图生成的概率分解为两部分:1)属性生成和2)边生成。通过对两个组件进行建模,GPT-GNN捕捉到生成过程中节点属性与图结构之间的内在依赖关系。在10亿规模的开放学术图和亚马逊推荐数据上进行的综合实验表明,GPT-GNN在不经过预训练的情况下,在各种下游任务中的表现显著优于最先进的GNN模型,最高可达9.1%。

**关键词:**生成式预训练,图神经网络,图表示学习,神经嵌入,GNN预训练

成为VIP会员查看完整内容
0
67

题目: Relation Adversarial Network for Low Resource Knowledge Graph Completion

摘要: 知识图谱补全(Knowledge Graph Completion, KGC)是一种通过链接预测或关系提取来填充缺少的链接来改进知识图谱的方法。KGC的主要困难之一是资源不足。之前的方法假设有足够训练的三元组来学习实体和关系的通用向量,或者假设有足够数量的标签句子来训练一个合格的关系提取模型。然而,在KGs中,少资源关系非常普遍,这些新增加的关系往往没有很多已知的样本去进行训练。在这项工作中,我们的目标是在具有挑战性的环境下只有有限可用的训练实例预测新的事实。我们提出了一个加权关系对抗性网络的通用框架,它利用对抗性过程来帮助将从多资源关系中学习到的知识/特征调整为不同但相关的少资源关系。具体地说,该框架利用了一个关系鉴别器来区分样本和不同的关系,帮助学习更容易从源关系转移到目标关系的关系不变量特征。实验结果表明,该方法在少资源设置下的链路预测和关系提取都优于以往的方法。

成为VIP会员查看完整内容
0
29

主题: Heterogeneous Graph-based Knowledge Transfer for Generalized Zero-shot Learning

摘要: 广义零样本学习(GZSL)解决了同时涉及可见类和不可见类的实例分类问题。关键问题是如何有效地将从可见类学习到的模型转换为不可见类。GZSL中现有的工作通常假设关于未公开类的一些先验信息是可用的。然而,当新的不可见类动态出现时,这种假设是不现实的。为此,我们提出了一种新的基于异构图的知识转移方法(HGKT),该方法利用图神经网络对GZSL、不可知类和不可见实例进行知识转移。具体地说,一个结构化的异构图,它是由所见类的高级代表节点构造而成,这些代表节点通过huasstein-barycenter来选择,以便同时捕获类间和类内的关系,聚集和嵌入函数可以通过图神经网络来学习,它可以用来计算不可见类的嵌入,方法是从它们的内部迁移知识。在公共基准数据集上的大量实验表明,我们的方法达到了最新的结果。

成为VIP会员查看完整内容
0
44

题目: Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs

摘要: 近年来随着知识图谱(KGs)的大量涌现,加上实体间缺失关系(链接)的不完全或部分信息,催生了大量关于知识库补全(也称为关系预测)的研究。最近的一些研究表明,基于卷积神经网络(CNN)的模型能够生成更丰富、更有表现力的特征嵌入,因此在关系预测方面也有很好的表现。然而,我们观察到这些KG嵌入独立地处理三元组,因此不能捕获到三元组周围的复杂和隐藏的信息。为此,本文提出了一种新的基于注意的特征嵌入方法,该方法能同时捕获任意给定实体邻域内的实体特征和关系特征。此外,我们还在模型中封装了关系集群和多跳关系。我们的实验研究为我们基于注意力的模型的有效性提供了深入的见解,并且与所有数据集上的最先进的方法相比,有显著的性能提升。

成为VIP会员查看完整内容
0
73

【导读】2020 年 2 月 7 日-2 月 12 日,AAAI 2020 在美国纽约举办。Michael Galkin撰写了AAAI2020知识图谱论文相关研究趋势包括:KG-Augmented语言模型,异构KGs中的实体匹配,KG完成和链路预测,基于kg的会话人工智能和问题回答,包括论文,值得查看!

Hiroaki Hayashi, Zecong Hu, Chenyan Xiong, Graham Neubig: Latent Relation Language Models. AAAI 2020

  • 潜在关系语言模型:本文提出了一种潜在关系语言模型(LRLMs),这是一类通过知识图谱关系对文档中词语的联合分布及其所包含的实体进行参数化的语言模型。该模型具有许多吸引人的特性:它不仅提高了语言建模性能,而且能够通过关系标注给定文本的实体跨度的后验概率。实验证明了基于单词的基线语言模型和先前合并知识图谱信息的方法的经验改进。定性分析进一步证明了该模型的学习能力,以预测适当的关系在上下文中。

成为VIP会员查看完整内容
0
120

题目:

Transfer Learning in Visual and Relational Reasoning

简介:

迁移学习已成为计算机视觉和自然语言处理中的事实上的标准,尤其是在缺少标签数据的地方。通过使用预先训练的模型和微调,可以显着提高准确性。在视觉推理任务(例如图像问答)中,传递学习更加复杂。除了迁移识别视觉特征的功能外,我们还希望迁移系统的推理能力。而且,对于视频数据,时间推理增加了另一个维度。在这项工作中,我们将迁移学习的这些独特方面形式化,并提出了一种视觉推理的理论框架,以完善的CLEVR和COGdatasets为例。此外,我们引入了一种新的,端到端的微分递归模型(SAMNet),该模型在两个数据集上的传输学习中均显示了最新的准确性和更好的性能。改进的SAMNet性能源于其将抽象的多步推理与序列的长度解耦的能力及其选择性的关注能力,使其仅能存储与问题相关的信息外部存储器中的对象。

目录:

成为VIP会员查看完整内容
0
33

【导读】知识图谱一直是学术界和工业界关注的热点。随着AAAI2020的到来,专知小编整理了最新10篇关于知识图谱的论文,来自清华大学、中科大、北航、中山大学、UCL、Facebook、腾讯、阿里巴巴等,包含义原知识图谱、知识迁移、知识图谱层次表示、常识知识图谱补全。

1、Towards Building a Multilingual Sememe Knowledge Base: Predicting Sememes for BabelNet Synsets(建立多语言义原知识库:预测BabelNet Synsets的义原)

AAAI2020 oral ,清华大学

作者:Fanchao Qi, Liang Chang, Maosong Sun, Sicong Ouyang, Zhiyuan Liu

摘要:义原是人类语言中最小的语义单位。义原知识库(KBs)包含了由义原标注的词,已成功地应用于许多自然语言处理任务中。然而,现有的义原KBs仅建立在少数几种语言上,这阻碍了它们的广泛应用。为了解决这个问题,我们提出基于BabelNet(一种多语言百科词典)为多种语言构建统一的义原知识库。我们首先构建一个作为多语言义原知识库种子的数据集。它为超过15000个synset (BabelNet的条目)手工注释义位。然后,我们提出了一种新的自动预测synsets义位的任务,目的是将种子数据集扩展成一个可用的知识库。我们还提出了两个简单有效的模型,利用了不同的synsets信息。最后,我们进行了定量和定性分析,以探索任务中的重要因素和困难。所有的源代码和数据,这项工作可以获得 https://github.com/thunlp/BabelNet-Sememe-Prediction

论文地址: https://www.zhuanzhi.ai/paper/a9486b11f2d44f239cd36c209b312946

2、Knowledge Graph Transfer Network for Few-Shot Recognition(知识图谱迁移网络小样本识别)

AAAI2020 oral ,中山大学,暗物质

作者:Riquan Chen, Tianshui Chen, Xiaolu Hui, Hefeng Wu, Guanbin Li, Liang Lin

摘要:小样本学习的目标是在给定一些基类有充足训练样本的情况下,从非常少的样本中学习新的类别。这个任务的主要挑战是新类很容易由颜色、质地、形状的物体或背景上下文(即特异性),这特别是对于训练样本少且不常见的相应的类别非常突出(见图1)。幸运的是,我们发现迁移信息的相关类别可以帮助学习新概念,从而避免新概念主导的特异性。此外,结合不同类别之间的语义关联可以有效地规范这种信息传递。在本文中,我们将语义关联以结构化的知识图谱的形式表示出来,并将此图集成到深度神经网络中,通过一种新的知识图谱传输网络(KGTN)来促进小样本学习。具体地,通过使用对应类别的分类器权值初始化每个节点,学习一种传播机制,通过图来自适应地传播节点消息,探索节点间的交互,将基类的分类器信息传递给新类别的分类器信息。在ImageNet数据集上的大量实验表明,与当前领先的对比方法相比,性能有了显著的改进。此外,我们还构建了一个覆盖更大范围类别的ImageNet-6K数据集。在这个数据集上的实验进一步证明了我们提出的模型的有效性。

论文地址: https://www.zhuanzhi.ai/paper/391fa8f7db194b700d66a14a75b714bd

3、Reasoning on Knowledge Graphs with Debate Dynamics(基于辩论动力学的知识图谱推理)

AAAI2020 ,Siemens Corporate Technology

作者:Marcel Hildebrandt, Jorge Andres Quintero Serna, Yunpu Ma, Martin Ringsquandl, Mitchell Joblin, Volker Tresp

摘要: 我们提出了一种基于辩论动力学的知识图谱自动推理方法。其主要思想是将三元组分类任务框定为两个抽取论点(知识图谱中的路径)的强化学习代理之间的辩论游戏,目标分别是促进事实为真(正题)或事实为假(反题)。基于这些论据,一个叫做“法官”的二元分类器决定事实是对还是错。这两个代理可以被看作是稀疏的、对抗性的特征生成器,它们为正题或反题提供了可解释的证据。与其他黑盒方法相比,这些参数允许用户了解法官的决定。由于这项工作的重点是创建一个可解释的方法,以保持一个有竞争力的预测精度,我们基准的三重分类和链接预测任务我们的方法。因此,我们发现我们的方法优于基准数据集FB15k-237、WN18RR和Hetionet上的几个基线。我们也进行了一个调查,发现提取的参数对用户是有益的。

论文地址: https://www.zhuanzhi.ai/paper/81aa00f925a022ed59d97dcce89c11d6

4、Differentiable Reasoning on Large Knowledge Bases and Natural Language(大规模知识库与自然语言上的可微分推理)

AAAI2020 ,UCL Centre for Artificial Intelligence, University College London,Facebook AI Research

作者:Pasquale Minervini, Matko Bošnjak, Tim Rocktäschel, Sebastian Riedel, Edward Grefenstette

摘要:用自然语言和知识库(KBs)表达的知识进行推理是人工智能面临的主要挑战,在机器阅读、对话和问题回答等方面都有应用。联合学习文本表示和转换的一些神经体系结构非常缺乏数据效率,很难分析它们的推理过程。这些问题由端到端的可微推理系统(如神经定理证明程序(NTPs))来解决,尽管它们只能用于小型符号KBs。在本文中,我们首先提出贪心NTPs (GNTPs),这是NTPs的扩展,解决了它们的复杂性和可伸缩性限制,从而使它们适用于真实世界的数据集。该结果是通过动态构建NTPs的计算图来实现的,并且只包含推理过程中最有希望的证明路径,从而获得更有效的模型。然后,我们提出了一种新的方法,通过在一个共享的嵌入空间中嵌入逻辑事实和自然语言句子来联合推理KBs和篇章提及。我们发现,GNTPs的性能与NTPs相当,但成本仅为NTPs的一小部分,同时在大型数据集上获得了具有竞争力的链接预测结果,为预测提供了解释,并引入了可解释的模型。源代码,数据集,和补充材料可在网上https://github.com/uclnlp/gntp

论文地址: https://www.zhuanzhi.ai/paper/5c5ba7a95bb0678315804cffdac41599

5、Improving Knowledge-aware Dialogue Generation via Knowledge Base Question Answering(通过知识库问题回答来改进知识感知对话的生成)

AAAI2020 ,华南理工,腾讯

作者:Jian Wang, Junhao Liu, Wei Bi, Xiaojiang Liu, Kejing He, Ruifeng Xu, Min Yang

摘要:神经网络模型常常面临将常识引入开放域对话系统的挑战。本文提出了一种新的知识感知对话生成模型(TransDG),该模型将基于知识库问答(KBQA)任务的问题表示和知识匹配能力进行转换,以促进话语理解和对话生成的事实知识选择。此外,我们提出了一种响应引导注意和多步骤解码策略,以指导我们的模型将重点放在用于响应生成的相关特征上。在两个基准数据集上的实验表明,该模型在生成信息丰富、流畅的对话方面具有较强的优越性。我们的代码在 https://github.com/siat-nlp/TransDG.

论文地址https://www.zhuanzhi.ai/paper/9a1e55686d9b78f5c2569a607fa504b2

6、Learning Hierarchy-Aware Knowledge Graph Embeddings for Link Prediction(用于链接预测的学习层次感知知识图嵌入)

AAAI2020 ,中科大

作者:Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, Jie Wang

摘要:知识图谱嵌入的目的是将实体和关系表示为低维向量(或矩阵、张量等),已经被证明是一种预测知识图谱中缺失链接的强大技术。现有的知识图谱嵌入模型主要侧重于对称/反对称、反转、复合等关系模式的建模。然而,许多现有的方法无法对语义层次结构建模,而这在实际应用程序中是很常见的。为了解决这一问题,我们提出了一种新的知识图谱嵌入模型——层次感知知识图谱嵌入(HAKE),它将实体映射到极坐标系统中。HAKE的灵感来自于这样一个事实,即在极坐标系统中的同心圆可以自然地反映层次结构。具体来说,径向坐标的目标是在层次结构的不同层次上对实体进行建模,半径较小的实体被期望在更高的层次上;角坐标的目的是区分层次结构中同一层次上的实体,这些实体的半径大致相同,但角度不同。实验表明,HAKE可以有效地对知识图谱中的语义层次进行建模,并在链接预测任务的基准数据集上显著优于现有的最先进的方法。

.

论文地址: https://www.zhuanzhi.ai/paper/1369a6bd83e18cd1e6eeb97d883bb652

7、Knowledge Graph Alignment Network with Gated Multi-hop Neighborhood Aggregation(用具有门控多跳邻居聚合的知识图谱对齐网络)

AAAI2020 ,南京大学,阿里巴巴

作者:Zequn Sun, Chengming Wang, Wei Hu, Muhao Chen, Jian Dai, Wei Zhang, Yuzhong Qu

摘要:图神经网络由于具有识别同构子图的能力,已经成为一种强大的基于嵌入的实体对齐范式。然而,在实知识图(KGs)中,对应实体通常具有非同构的邻域结构,这很容易导致gnn产生不同的表示。为了解决这一问题,我们提出了一种新的KG对齐网络,即AliNet,旨在以端到端方式缓解邻域结构的非同构性。由于模式异构性,对等实体的直接邻居通常是不相似的,AliNet引入了远程邻居来扩展它们的邻居结构之间的重叠。它采用了一种注意机制,以突出有益的遥远的邻居和减少噪音。然后,利用门控机制控制直接和远处邻居信息的聚合。我们进一步提出了一个关系损失来细化实体表示。我们进行了深入的实验,详细的烧蚀研究和分析的五个实体对齐数据集,证明了AliNet的有效性。

.

论文地址: https://www.zhuanzhi.ai/paper/bc1ac5e992eb35a3f3a5f7fffee3368a

8、Rule-Guided Compositional Representation Learning on Knowledge Graphs(规则指导的知识图谱组合式表示学习)

AAAI2020 ,北航

作者:Guanglin Niu, Yongfei Zhang, Bo Li, Peng Cui, Si Liu, Jingyang Li, Xiaowei Zhang

摘要:知识图谱的表示学习是将知识图中的实体和关系嵌入到低维连续向量空间中。早期的KG嵌入方法只关注三元组编码的结构化信息,由于KGs的结构稀疏性,导致其性能有限。最近的一些尝试考虑路径信息来扩展KGs的结构,但在获取路径表示的过程中缺乏可解释性。本文提出了一种新的基于规则和路径的联合嵌入(RPJE)方案,该方案充分利用了逻辑规则的可解释性和准确性、KG嵌入的泛化性以及路径的补充语义结构。具体来说,首先从KG中挖掘出不同长度(规则体中的关系数)的Horn子句形式的逻辑规则,并对其进行编码,用于表示学习。然后,利用长度2的规则来精确地组合路径,而使用长度1的规则来明确地创建关系之间的语义关联和约束关系嵌入。优化时还考虑了规则的置信度,保证了规则在表示学习中的可用性。大量的实验结果表明,RPJE在KG完成任务上的表现优于其他最先进的基线,这也证明了利用逻辑规则和路径来提高表示学习的准确性和可解释性的优越性。

.

论文地址https://www.zhuanzhi.ai/paper/bc1ac5e992eb35a3f3a5f7fffee3368a

9、InteractE: Improving Convolution-based Knowledge Graph Embeddings by Increasing Feature Interactions(规InteractE:通过增加特征交互来改进基于卷积的知识图谱嵌入)

AAAI2020 ,Indian Institute of Science, Columbia University

作者:Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, Nilesh Agrawal, Partha Talukdar

摘要:现有的知识图谱大多存在不完备性,可以通过基于已知事实推断缺失的链接来缓解不完备性。一种流行的方法是生成实体和关系的低维嵌入,并使用它们进行推论。ConvE是最近提出的一种方法,它将卷积滤波器应用于实体和关系嵌入的二维重塑,以捕获其组件之间丰富的交互。然而,ConvE能够捕获的交互的数量是有限的。在这篇论文中,我们分析了增加这些相互作用的数量如何影响链路预测性能,并利用我们的观测结果提出了相互作用。InteractE基于三个关键思想:特征置换、新颖的特征重塑和循环卷积。通过大量的实验,我们发现InteractE在FB15k-237上的性能优于最先进的卷积链路预测基线。此外,InteractE在FB15k-237、WN18RR和YAGO3-10数据集上的MRR评分分别比ConvE高9%、7.5%和23%。结果验证了我们的中心假设——增加特征交互有助于链接预测性能。我们提供InteractE的源代码,以鼓励可重复的研究。http://github.com/malllabiisc/ InteractE.

.

论文地址: https://www.zhuanzhi.ai/paper/5bbb1f49b1b4b26b6d1de5c7dce3a953

10、Commonsense Knowledge Base Completion with Structural and Semantic Context(具有结构和语义上下文的常识知识库的完成)

AAAI2020 ,Allen Institute for Artificial Intelligence 华盛顿大学

作者:Chaitanya Malaviya, Chandra Bhagavatula, Antoine Bosselut, Yejin Choi

摘要:与经过大量研究的传统知识库(如Freebase)相比,对常识知识图谱(如原子图和概念图)的自动知识库补全带来了独特的挑战。常识知识图谱使用自由格式的文本来表示节点,这使得节点的数量比传统KBs多了几个数量级(ATOMIC比Freebase多18倍(FB15K-237))。重要的是,这意味着图数据结构将显著稀疏化——这是现有KB补全方法面临的主要挑战,因为这些方法在相对较小的节点集上采用密集连接的图数据。在本文中,我们提出了新的知识库完成模型,该模型可以通过利用节点的结构和语义上下文来解决这些挑战。具体来说,我们研究了两个关键的思想: (1) 从局部图结构学习,使用图卷积网络和自动图加密,(2) 从预先训练的语言模型学习到知识图谱,以增强知识的上下文表示。我们描述了将来自这两个来源的信息合并到一个联合模型中的方法,并提供了原子知识库完成和使用ConceptNet上的排名指标进行评估的第一个经验结果。我们的结果证明了语言模型表示在提高链接预测性能方面的有效性,以及在训练子图以提高计算效率时从局部图结构(对ConceptNet的MRR +1.5分)学习的优势。对模型预测的进一步分析揭示了语言模型能够很好地捕捉到的常识类型。

.

论文地址: https://www.zhuanzhi.ai/paper/535d810640d4b84fb46f3fd7e678f423

成为VIP会员查看完整内容
0
95

题目

Few-Shot Knowledge Graph Completion

简介

知识图是各种自然语言处理应用的有用资源。以前的KG完成方法需要为每个关系提供大量的训练实例(即头-尾实体对)。实际情况是,对于大多数关系,很少有实体对可用。现有的单镜头学习极限方法普遍适用于少镜头场景,不能充分利用监控信息,但很少有人对KG完工的研究还很少。在这项工作中,我们提出了一个新的少数镜头关系学习模型(FSRL),旨在发现新的关系事实很少镜头参考。FSRL可以有效地从异构图结构中获取知识,聚集少量镜头引用的表示,并为每个关系匹配相似的引用集实体对。在两个公共数据集上进行的大量实验表明,FSRL优于最新技术。

作者

Chuxu Zhang, Meng Jiang,Nitesh V. Chawla,来自圣母大学

Huaxiu Yao, Zhenhui Li,来自宾夕法尼亚州立大学

Chao Huang, 来自JD金融美国公司

成为VIP会员查看完整内容
0
71

A visual-relational knowledge graph (KG) is a multi-relational graph whose entities are associated with images. We introduce ImageGraph, a KG with 1,330 relation types, 14,870 entities, and 829,931 images. Visual-relational KGs lead to novel probabilistic query types where images are treated as first-class citizens. Both the prediction of relations between unseen images and multi-relational image retrieval can be formulated as query types in a visual-relational KG. We approach the problem of answering such queries with a novel combination of deep convolutional networks and models for learning knowledge graph embeddings. The resulting models can answer queries such as "How are these two unseen images related to each other?" We also explore a zero-shot learning scenario where an image of an entirely new entity is linked with multiple relations to entities of an existing KG. The multi-relational grounding of unseen entity images into a knowledge graph serves as the description of such an entity. We conduct experiments to demonstrate that the proposed deep architectures in combination with KG embedding objectives can answer the visual-relational queries efficiently and accurately.

0
9
下载
预览

We introduce KBGAN, an adversarial learning framework to improve the performances of a wide range of existing knowledge graph embedding models. Because knowledge graphs typically only contain positive facts, sampling useful negative training examples is a non-trivial task. Replacing the head or tail entity of a fact with a uniformly randomly selected entity is a conventional method for generating negative facts, but the majority of the generated negative facts can be easily discriminated from positive facts, and will contribute little towards the training. Inspired by generative adversarial networks (GANs), we use one knowledge graph embedding model as a negative sample generator to assist the training of our desired model, which acts as the discriminator in GANs. This framework is independent of the concrete form of generator and discriminator, and therefore can utilize a wide variety of knowledge graph embedding models as its building blocks. In experiments, we adversarially train two translation-based models, TransE and TransD, each with assistance from one of the two probability-based models, DistMult and ComplEx. We evaluate the performances of KBGAN on the link prediction task, using three knowledge base completion datasets: FB15k-237, WN18 and WN18RR. Experimental results show that adversarial training substantially improves the performances of target embedding models under various settings.

0
5
下载
预览
小贴士
相关VIP内容
专知会员服务
120+阅读 · 2020年2月13日
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
【清华大学】元知识图谱推理
专知
86+阅读 · 2019年9月2日
学习开发知识图谱中的长期关系依赖
人工智能前沿讲习班
6+阅读 · 2019年6月10日
Zero-Shot Learning相关资源大列表
专知
45+阅读 · 2019年1月1日
论文浅尝 | 多内容实体和关系联合抽取的对抗训练
开放知识图谱
38+阅读 · 2018年12月4日
相关论文
Heterogeneous Relational Reasoning in Knowledge Graphs with Reinforcement Learning
Mandana Saebi,Steven Krieg,Chuxu Zhang,Meng Jiang,Nitesh Chawla
8+阅读 · 2020年3月12日
Rik Koncel-Kedziorski,Dhanush Bekal,Yi Luan,Mirella Lapata,Hannaneh Hajishirzi
32+阅读 · 2019年4月4日
Adversarial Transfer Learning
Garrett Wilson,Diane J. Cook
9+阅读 · 2018年12月6日
He Huang,Changhu Wang,Philip S. Yu,Chang-Dong Wang
4+阅读 · 2018年11月12日
Lisa Bauer,Yicheng Wang,Mohit Bansal
4+阅读 · 2018年9月17日
Wenhu Chen,Wenhan Xiong,Xifeng Yan,William Wang
14+阅读 · 2018年4月5日
Daniel Oñoro-Rubio,Mathias Niepert,Alberto García-Durán,Roberto González,Roberto J. López-Sastre
9+阅读 · 2018年3月31日
Liwei Cai,William Yang Wang
5+阅读 · 2018年2月20日
Chaowei Xiao,Bo Li,Jun-Yan Zhu,Warren He,Mingyan Liu,Dawn Song
8+阅读 · 2018年1月15日
Wenhan Xiong,Thien Hoang,William Yang Wang
18+阅读 · 2018年1月8日
Top