A novel form of inference attack in vertical federated learning (VFL) is proposed, where two parties collaborate in training a machine learning (ML) model. Logistic regression is considered for the VFL model. One party, referred to as the active party, possesses the ground truth labels of the samples in the training phase, while the other, referred to as the passive party, only shares a separate set of features corresponding to these samples. It is shown that the active party can carry out inference attacks on both training and prediction phase samples by acquiring an ML model independently trained on the training samples available to them. This type of inference attack does not require the active party to be aware of the score of a specific sample, hence it is referred to as an agnostic inference attack. It is shown that utilizing the observed confidence scores during the prediction phase, before the time of the attack, can improve the performance of the active party's autonomous ML model, and thus improve the quality of the agnostic inference attack. As a countermeasure, privacy-preserving schemes (PPSs) are proposed. While the proposed schemes preserve the utility of the VFL model, they systematically distort the VFL parameters corresponding to the passive party's features. The level of the distortion imposed on the passive party's parameters is adjustable, giving rise to a trade-off between privacy of the passive party and interpretabiliy of the VFL outcomes by the active party. The distortion level of the passive party's parameters could be chosen carefully according to the privacy and interpretabiliy concerns of the passive and active parties, respectively, with the hope of keeping both parties (partially) satisfied. Finally, experimental results demonstrate the effectiveness of the proposed attack and the PPSs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员