In this paper, a swarm intelligence optimization algorithm is proposed as the Shrike Optimization Algorithm (SHOA). Many creatures living in a group and surviving for the next generation randomly search for food; they follow the best one in the swarm, called swarm intelligence. Swarm-based algorithms are designed to mimic creatures' behaviours, but in multimodal problem competition, they cannot find optimal solutions in some difficult cases. The main inspiration for the proposed algorithm is taken from the swarming behaviours of shrike birds in nature. The shrike birds are migrating from their territory to survive. However, the SHOA mimics the surviving behaviour of shrike birds for living, adaptation, and breeding. Two parts of optimization exploration and exploitation are designed by modelling shrike breeding and searching for foods to feed nestlings until they get ready to fly and live independently. This paper is a mathematical model for the SHOA to perform optimization. The SHOA benchmarked 19 well-known mathematical test functions, 10 from CEC-2019, and 12 from CEC-2022 most recent test functions, a total of 41 competitive mathematical test functions benchmarked and four real-world engineering problems with different conditions, both constrained and unconstrained. The statistical results obtained from the Wilcoxon sum ranking and Fridman test show that SHOA has a significant statistical superiority in handling the test benchmarks compared to competitor algorithms in multi-modal problems. The results for engineering optimization problems show the SHOA outperforms other nature-inspired algorithms in many cases.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员