Larval zebrafish hunting provides a tractable setting to study how ecological and energetic constraints shape adaptive behavior in both biological brains and artificial agents. Here we develop a minimal agent-based model, training recurrent policies with deep reinforcement learning in a bout-based zebrafish simulator. Despite its simplicity, the model reproduces hallmark hunting behaviors -- including eye vergence-linked pursuit, speed modulation, and stereotyped approach trajectories -- that closely match real larval zebrafish. Quantitative trajectory analyses show that pursuit bouts systematically reduce prey angle by roughly half before strike, consistent with measurements. Virtual experiments and parameter sweeps vary ecological and energetic constraints, bout kinematics (coupled vs. uncoupled turns and forward motion), and environmental factors such as food density, food speed, and vergence limits. These manipulations reveal how constraints and environments shape pursuit dynamics, strike success, and abort rates, yielding falsifiable predictions for neuroscience experiments. These sweeps identify a compact set of constraints -- binocular sensing, the coupling of forward speed and turning in bout kinematics, and modest energetic costs on locomotion and vergence -- that are sufficient for zebrafish-like hunting to emerge. Strikingly, these behaviors arise in minimal agents without detailed biomechanics, fluid dynamics, circuit realism, or imitation learning from real zebrafish data. Taken together, this work provides a normative account of zebrafish hunting as the optimal balance between energetic cost and sensory benefit, highlighting the trade-offs that structure vergence and trajectory dynamics. We establish a virtual lab that narrows the experimental search space and generates falsifiable predictions about behavior and neural coding.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员