Scene-aware Adaptive Compressive Sensing (ACS) has attracted significant interest due to its promising capability for efficient and high-fidelity acquisition of scene images. ACS typically prescribes adaptive sampling allocation (ASA) based on previous samples in the absence of ground truth. However, when confronting unknown scenes, existing ACS methods often lack accurate judgment and robust feedback mechanisms for ASA, thus limiting the high-fidelity sensing of the scene. In this paper, we introduce a Sampling Innovation-Based ACS (SIB-ACS) method that can effectively identify and allocate sampling to challenging image reconstruction areas, culminating in high-fidelity image reconstruction. An innovation criterion is proposed to judge ASA by predicting the decrease in image reconstruction error attributable to sampling increments, thereby directing more samples towards regions where the reconstruction error diminishes significantly. A sampling innovation-guided multi-stage adaptive sampling (AS) framework is proposed, which iteratively refines the ASA through a multi-stage feedback process. For image reconstruction, we propose a Principal Component Compressed Domain Network (PCCD-Net), which efficiently and faithfully reconstructs images under AS scenarios. Extensive experiments demonstrate that the proposed SIB-ACS method significantly outperforms the state-of-the-art methods in terms of image reconstruction fidelity and visual effects. Codes are available at https://github.com/giant-pandada/SIB-ACS_CVPR2025.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2024年4月16日
Arxiv
10+阅读 · 2020年6月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员