Current graph neural network (GNN) architectures naively average or sum node embeddings into an aggregated graph representation -- potentially losing structural or semantic information. We here introduce OT-GNN, a model that computes graph embeddings using parametric prototypes that highlight key facets of different graph aspects. Towards this goal, we are (to our knowledge) the first to successfully combine optimal transport (OT) with parametric graph models. Graph representations are obtained from Wasserstein distances between the set of GNN node embeddings and "prototype" point clouds as free parameters. We theoretically prove that, unlike traditional sum aggregation, our function class on point clouds satisfies a fundamental universal approximation theorem. Empirically, we address an inherent collapse optimization issue by proposing a noise contrastive regularizer to steer the model towards truly exploiting the optimal transport geometry. Finally, we consistently report better generalization performance on several molecular property prediction tasks, while exhibiting smoother graph representations.


翻译:目前的图形神经网络(GNN)结构天真的平均或总节点嵌入一个总图显示中 -- -- 可能会失去结构性或语义信息。 我们在此引入了OT- GNN, 这是一种模型, 用来计算图形嵌入的参数原型, 以突出不同图形方面的关键方面。 为实现这一目标, 我们( 据我们所知)是第一个成功地将最佳运输( OT) 与参数图形模型结合起来的( OT) 。 从瓦瑟斯坦( 瓦瑟斯坦) 的一组 GNNde 嵌入和“ 原型” 点云作为自由参数之间的距离中获得了图示。 我们理论上证明, 我们点云上的功能类与传统的总和不同, 符合一个基本的普遍性近似理论。 偶然地, 我们处理一个固有的崩溃优化问题, 方法是提出一个噪音对比常规化器, 来引导模型真正利用最佳运输几何形状模型。 最后, 我们不断报告几个分子属性预测任务有更好的概括性表现, 同时展示更平滑的图形演示。

0
下载
关闭预览

相关内容

【AAAI2021】 层次图胶囊网络
专知会员服务
84+阅读 · 2020年12月18日
【WSDM2021】保存节点相似性的图卷积网络
专知会员服务
41+阅读 · 2020年11月22日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
【AAAI2021】 层次图胶囊网络
专知会员服务
84+阅读 · 2020年12月18日
【WSDM2021】保存节点相似性的图卷积网络
专知会员服务
41+阅读 · 2020年11月22日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
3+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员