Current graph neural network (GNN) architectures naively average or sum node embeddings into an aggregated graph representation -- potentially losing structural or semantic information. We here introduce OT-GNN, a model that computes graph embeddings using parametric prototypes that highlight key facets of different graph aspects. Towards this goal, we are (to our knowledge) the first to successfully combine optimal transport (OT) with parametric graph models. Graph representations are obtained from Wasserstein distances between the set of GNN node embeddings and "prototype" point clouds as free parameters. We theoretically prove that, unlike traditional sum aggregation, our function class on point clouds satisfies a fundamental universal approximation theorem. Empirically, we address an inherent collapse optimization issue by proposing a noise contrastive regularizer to steer the model towards truly exploiting the optimal transport geometry. Finally, we consistently report better generalization performance on several molecular property prediction tasks, while exhibiting smoother graph representations.
翻译:目前的图形神经网络(GNN)结构天真的平均或总节点嵌入一个总图显示中 -- -- 可能会失去结构性或语义信息。 我们在此引入了OT- GNN, 这是一种模型, 用来计算图形嵌入的参数原型, 以突出不同图形方面的关键方面。 为实现这一目标, 我们( 据我们所知)是第一个成功地将最佳运输( OT) 与参数图形模型结合起来的( OT) 。 从瓦瑟斯坦( 瓦瑟斯坦) 的一组 GNNde 嵌入和“ 原型” 点云作为自由参数之间的距离中获得了图示。 我们理论上证明, 我们点云上的功能类与传统的总和不同, 符合一个基本的普遍性近似理论。 偶然地, 我们处理一个固有的崩溃优化问题, 方法是提出一个噪音对比常规化器, 来引导模型真正利用最佳运输几何形状模型。 最后, 我们不断报告几个分子属性预测任务有更好的概括性表现, 同时展示更平滑的图形演示。