Recent advances in robotics and autonomous systems have broadened the use of robots in laboratory settings, including automated synthesis, scalable reaction workflows, and collaborative tasks in self-driving laboratories (SDLs). This paper presents a comprehensive development of a mobile manipulator designed to assist human operators in such autonomous lab environments. Kinematic modeling of the manipulator is carried out based on the Denavit Hartenberg (DH) convention and inverse kinematics solution is determined to enable precise and adaptive manipulation capabilities. A key focus of this research is enhancing the manipulator ability to reliably grasp textured objects as a critical component of autonomous handling tasks. Advanced vision-based algorithms are implemented to perform real-time object detection and pose estimation, guiding the manipulator in dynamic grasping and following tasks. In this work, we integrate a vision method that combines feature-based detection with homography-driven pose estimation, leveraging depth information to represent an object pose as a $2$D planar projection within $3$D space. This adaptive capability enables the system to accommodate variations in object orientation and supports robust autonomous manipulation across diverse environments. By enabling autonomous experimentation and human-robot collaboration, this work contributes to the scalability and reproducibility of next-generation chemical laboratories
翻译:机器人学与自主系统的最新进展拓展了机器人在实验室环境中的应用,包括自动化合成、可扩展反应工作流以及自动驾驶实验室中的协作任务。本文全面介绍了一种专为协助人类操作者在自主实验室环境中工作而设计的移动机械臂系统。基于Denavit Hartenberg(DH)约定建立了机械臂运动学模型,并确定了逆运动学解以实现精确自适应的操作能力。本研究的重点在于增强机械臂可靠抓取纹理化物体的能力,这是自主操控任务的关键组成部分。通过实施先进的视觉算法实现实时目标检测与位姿估计,引导机械臂完成动态抓取与跟踪任务。本研究集成了一种视觉方法,将基于特征的检测与单应性驱动的位姿估计相结合,利用深度信息将物体位姿表示为三维空间中的$2$维平面投影。这种自适应能力使系统能够适应物体方向变化,并在多样化环境中实现鲁棒的自主操控。通过实现自主实验与人机协作,本工作为新一代化学实验室的可扩展性与可重复性提供了支持。