The article reviews significant advances in networked signal and information processing, which have enabled in the last 25 years extending decision making and inference, optimization, control, and learning to the increasingly ubiquitous environments of distributed agents. As these interacting agents cooperate, new collective behaviors emerge from local decisions and actions. Moreover, and significantly, theory and applications show that networked agents, through cooperation and sharing, are able to match the performance of cloud or federated solutions, while offering the potential for improved privacy, increasing resilience, and saving resources.


翻译:本文回顾了网络信号和信息处理的重大进展,这些进展使得在过去25年中,决策和推断、优化、控制和学习扩展到了分布式Agent的越来越普遍的环境中。随着这些互动代理人的合作,将从本地的决策和行动中出现新的集体行为。此外,理论和应用表明,通过合作和分享,网络代理能够匹配云或联合解决方案的性能,同时提供提高隐私、提高韧性和节省资源的潜力。

1
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
30+阅读 · 2021年7月7日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员