The traditional workflow in continuum mechanics simulations is that a geometry description -- for example obtained using Constructive Solid Geometry or Computer Aided Design tools -- forms the input for a mesh generator. The mesh is then used as the sole input for the finite element, finite volume, and finite difference solver, which at this point no longer has access to the original, "underlying" geometry. However, many modern techniques -- for example, adaptive mesh refinement and the use of higher order geometry approximation methods -- really do need information about the underlying geometry to realize their full potential. We have undertaken an exhaustive study of where typical finite element codes use geometry information, with the goal of determining what information geometry tools would have to provide. Our study shows that nearly all geometry-related needs inside the simulators can be satisfied by just two "primitives": elementary queries posed by the simulation software to the geometry description. We then show that it is possible to provide these primitives in all of the frequently used ways in which geometries are described in common industrial workflows, and illustrate our solutions using a number of examples.


翻译:连续力学模拟的传统工作流程是,一个几何描述 -- -- 例如,利用建构性固态几何或计算机辅助设计工具获得的描述 -- -- 构成网状生成器的输入。然后,网状作为有限的元素、有限体积和有限差异求解器的唯一输入,目前,这些元素不再能够进入原始的“隐蔽”几何。然而,许多现代技术 -- -- 例如,适应性网目改进和使用更高顺序几何近似方法 -- -- 确实需要关于基本几何学的信息,以充分实现其潜力。我们已对典型的有限元素代码使用几何何信息的地方进行了详尽研究,目的是确定信息几何工具必须提供什么。我们的研究显示,模拟器内几乎所有与几何有关的需要都可以由两个“基本”来满足:模拟软件对几何描述提出的基本询问。我们然后表明,有可能以所有常用的方式提供这些原始的几何特征,在共同工业工作流程中加以描述,并用几个例子来说明我们的解决办法。

1
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
75+阅读 · 2021年3月16日
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
34+阅读 · 2020年9月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Top
微信扫码咨询专知VIP会员