We consider fast, provably accurate algorithms for approximating functions on the $d$-dimensional torus, $f: \mathbb{ T }^d \rightarrow \mathbb{C}$, that are sparse (or compressible) in the Fourier basis. In particular, suppose that the Fourier coefficients of $f$, $\{c_{\bf k} (f) \}_{{\bf k} \in \mathbb{Z}^d}$, are concentrated in a finite set $I \subset \mathbb{Z}^d$ so that $$\min_{\Omega \subset I s.t. |\Omega| =s } \left\| f - \sum_{{\bf k} \in \Omega} c_{\bf k} (f) e^{ -2 \pi i {\bf k} \cdot \circ} \right\|_2 < \epsilon \|f \|_2$$ holds for $s \ll |I|$ and $\epsilon \in (0,1)$. We aim to identify a near-minimizing subset $\Omega \subset I$ and accurately approximate the associated Fourier coefficients $\{ c_{\bf k} (f) \}_{{\bf k} \in \Omega}$ as rapidly as possible. We present both deterministic as well as randomized algorithms using $O(s^2 d \log^c (|I|))$-time/memory and $O(s d \log^c (|I|))$-time/memory, respectively. Most crucially, all of the methods proposed herein achieve these runtimes while satisfying theoretical best $s$-term approximation guarantees which guarantee their numerical accuracy and robustness to noise for general functions. These are achieved by modifying several one-dimensional Sparse Fourier Transform (SFT) methods to subsample a function along a reconstructing rank-1 lattice for the given frequency set $I$ to rapidly identify a near-minimizing subset $\Omega \subset I$ without using anything about the lattice beyond its generating vector. This requires new fast and low-memory frequency identification techniques capable of rapidly recovering vector-valued frequencies in $\mathbb{Z}^d$ as opposed to simple integer frequencies in the univariate setting. Two different strategies are proposed and analyzed, each with different accuracy versus computational speed and memory tradeoffs.


翻译:我们考虑快速, 准确的算法, 用于在 $d$- 维度, $f:\ mathbb{ T @d\rightrow\mathb{C} 快速( 或者压缩) 在 Freier 的基础上, 缺乏( 或压缩) 。 特别是, 假设 Fourier 系数 $f$, $c ⁇ bf k} (f) =bf k}\ kf k} (f) =2\ pi@ lif kf} kdob}, 集中在一定的设置 $I\ subset $ 上, 美元\\\\\\\\\\\\\\\\\ m\ maxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxlxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
已删除
将门创投
4+阅读 · 2018年6月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月22日
Arxiv
0+阅读 · 2021年2月21日
Arxiv
0+阅读 · 2021年2月19日
Arxiv
0+阅读 · 2021年2月18日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
R工程化—Rest API 之plumber包
R语言中文社区
11+阅读 · 2018年12月25日
已删除
将门创投
4+阅读 · 2018年6月1日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员