Graph sparsification is to approximate an arbitrary graph by a sparse graph and is useful in many applications, such as simplification of social networks, least squares problems, numerical solution of symmetric positive definite linear systems and etc. In this paper, inspired by the well-known sparse signal recovery algorithm called orthogonal matching pursuit (OMP), we introduce a deterministic, greedy edge selection algorithm called universal greedy approach (UGA) for graph sparsification. For a general spectral sparsification problem, e.g., positive subset selection problem from a set of $m$ vectors from $\mathbb{R}^n$, we propose a nonnegative UGA algorithm which needs $O(mn^2+ n^3/\epsilon^2)$ time to find a $\frac{1+\epsilon/\beta}{1-\epsilon/\beta}$-spectral sparsifier with positive coefficients with sparsity $\le\lceil\frac{n}{\epsilon^2}\rceil$, where $\beta$ is the ratio between the smallest length and largest length of the vectors. The convergence of the nonnegative UGA algorithm will be established. For the graph sparsification problem, another UGA algorithm will be proposed which can output a $\frac{1+O(\epsilon)}{1-O(\epsilon)}$-spectral sparsifier with $\lceil\frac{n}{\epsilon^2}\rceil$ edges in $O(m+n^2/\epsilon^2)$ time from a graph with $m$ edges and $n$ vertices under some mild assumptions. This is a linear time algorithm in terms of the number of edges that the community of graph sparsification is looking for. The best result in the literature to the knowledge of the authors is the existence of a deterministic algorithm which is almost linear, i.e. $O(m^{1+o(1)})$ for some $o(1)=O(\frac{(\log\log(m))^{2/3}}{\log^{1/3}(m)})$. Finally, extensive experimental results, including applications to graph clustering and least squares regression, show the effectiveness of proposed approaches.


翻译:图形sparization 是指以一个稀薄的图形来接近任意的图形, 在许多应用中有用, 比如社会网络简化、 最小平方问题、 对正正正确定线性系统的数字解决方案等等。 在本文中, 受著名的稀有信号恢复算法( 被称为正向匹配追寻 (OMP) 的启发, 我们引入了一种叫通用贪婪方法( UGA) 的确定性、 贪婪的边缘选择算法。 对于普通光谱解析的问题, 比如: (l% 平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面, 平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年12月18日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
37+阅读 · 2020年8月22日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年2月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月16日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年2月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员