We launch EVA-02, a next-generation Transformer-based visual representation pre-trained to reconstruct strong and robust language-aligned vision features via masked image modeling. With an updated plain Transformer architecture as well as extensive pre-training from an open & accessible giant CLIP vision encoder, EVA-02 demonstrates superior performance compared to prior state-of-the-art approaches across various representative vision tasks, while utilizing significantly fewer parameters and compute budgets. Notably, using exclusively publicly accessible training data, EVA-02 with only 304M parameters achieves a phenomenal 90.0 fine-tuning top-1 accuracy on ImageNet-1K val set. Additionally, our EVA-02-CLIP can reach up to 80.4 zero-shot top-1 on ImageNet-1K, outperforming the previous largest & best open-sourced CLIP with only ~1/6 parameters and ~1/6 image-text training data. We offer four EVA-02 variants in various model sizes, ranging from 6M to 304M parameters, all with impressive performance. To facilitate open access and open research, we release the complete suite of EVA-02 to the community at https://github.com/baaivision/EVA/tree/master/EVA-02.
翻译:我们发布了EVA-02,这是一种基于Transformer的下一代视觉化表征,经过遮蔽图像建模预训练,能够重建强大且稳健的与语言对齐的视觉特征。 EVA-02具有更新的Transformer架构以及从开放和可访问的巨型CLIP视觉编码器进行广泛的预训练,相比先前的最先进方法,在各种代表性视觉任务中展现出卓越的表现,同时使用显著更少的参数和计算预算。值得注意的是,仅使用公开可访问的训练数据,具有304M参数的EVA-02在ImageNet-1K val集上实现了惊人的90.0的微调top-1准确率。此外,我们的EVA-02-CLIP可以在ImageNet-1K上实现高达80.4的零-shot-top-1,优于先前最大且最好的开源CLIP,其参数量和图像-文本训练数据量仅约为其1/6。我们提供了四种EVA-02变体,涵盖不同的模型大小,从6M到304M参数,均表现出色。为了促进开放访问和开放研究,我们在https://github.com/baaivision/EVA/tree/master/EVA-02上向社区发布了完整的EVA-02套件。