Many governmental bodies are adopting AI policies for decision-making. In particular, Reinforcement Learning has been used to design policies that citizens would be expected to follow if implemented. Much RL work assumes that citizens follow these policies, and evaluate them with this in mind. However, we know from prior work that without institutional trust, citizens will not follow policies put in place by governments. In this work, we develop a trust-aware RL algorithm for resource allocation in communities. We consider the case of humanitarian engineering, where the organization is aiming to distribute some technology or resource to community members. We use a Deep Deterministic Policy Gradient approach to learn a resource allocation that fits the needs of the organization. Then, we simulate resource allocation according to the learned policy, and model the changes in institutional trust of community members. We investigate how this incorporation of institutional trust affects outcomes, and ask how effectively an organization can learn policies if trust values are private. We find that incorporating trust into RL algorithms can lead to more successful policies, specifically when the organization's goals are less certain. We find more conservative trust estimates lead to increased fairness and average community trust, though organization success suffers. Finally, we explore a strategy to prevent unfair outcomes to communities. We implement a quota system by an external entity which decreases the organization's utility when it does not serve enough community members. We find this intervention can improve fairness and trust among communities in some cases, while decreasing the success of the organization. This work underscores the importance of institutional trust in algorithm design and implementation, and identifies a tension between organization success and community well-being.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员