Poisson's equation plays an important role in modeling many physical systems. In electrostatic self-consistent low-temperature plasma (LTP) simulations, Poisson's equation is solved at each simulation time step, which can amount to a significant computational cost for the entire simulation. In this paper, we describe the development of a generic machine-learned Poisson solver specifically designed for the requirements of LTP simulations in complex 2D reactor geometries on structured Cartesian grids. Here, the reactor geometries can consist of inner electrodes and dielectric materials as often found in LTP simulations. The approach leverages a hybrid CNN-transformer network architecture in combination with a weighted multiterm loss function. We train the network using highly-randomized synthetic data to ensure the generalizability of the learned solver to unseen reactor geometries. The results demonstrate that the learned solver is able to produce quantitatively and qualitatively accurate solutions. Furthermore, it generalizes well on new reactor geometries such as reference geometries found in the literature. To increase the numerical accuracy of the solutions required in LTP simulations, we employ a conventional iterative solver to refine the raw predictions, especially to recover the high-frequency features not resolved by the initial prediction. With this, the proposed learned Poisson solver provides the required accuracy and is potentially faster than a pure GPU-based conventional iterative solver. This opens up new possibilities for developing a generic and high-performing learned Poisson solver for LTP systems in complex geometries.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员