The current trend of extractive question answering (QA) heavily relies on the joint encoding of the document and the question. In this paper, we formalize a new modular variant of extractive QA, Phrase-Indexed Question Answering (PI-QA), that enforces complete independence of the document encoder from the question by building the standalone representation of the document discourse, a key research goal in machine reading comprehension. That is, the document encoder generates an index vector for each answer candidate phrase in the document; at inference time, each question is mapped to the same vector space and the answer with the nearest index vector is obtained. The formulation also implies a significant scalability advantage since the index vectors can be pre-computed and hashed offline for efficient retrieval. We experiment with baseline models for the new task, which achieve a reasonable accuracy but significantly underperform unconstrained QA models. We invite the QA research community to engage in PI-QA for closing the gap.

3
下载
关闭预览

相关内容

自动问答(Question Answering, QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的研究方向。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

Question Answering has recently received high attention from artificial intelligence communities due to the advancements in learning technologies. Early question answering models used rule-based approaches and moved to the statistical approach to address the vastly available information. However, statistical approaches are shown to underperform in handling the dynamic nature and the variation of language. Therefore, learning models have shown the capability of handling the dynamic nature and variations in language. Many deep learning methods have been introduced to question answering. Most of the deep learning approaches have shown to achieve higher results compared to machine learning and statistical methods. The dynamic nature of language has profited from the nonlinear learning in deep learning. This has created prominent success and a spike in work on question answering. This paper discusses the successes and challenges in question answering question answering systems and techniques that are used in these challenges.

0
4
下载
预览

Existing question answering (QA) datasets fail to train QA systems to perform complex reasoning and provide explanations for answers. We introduce HotpotQA, a new dataset with 113k Wikipedia-based question-answer pairs with four key features: (1) the questions require finding and reasoning over multiple supporting documents to answer; (2) the questions are diverse and not constrained to any pre-existing knowledge bases or knowledge schemas; (3) we provide sentence-level supporting facts required for reasoning, allowing QA systems to reason with strong supervision and explain the predictions; (4) we offer a new type of factoid comparison questions to test QA systems' ability to extract relevant facts and perform necessary comparison. We show that HotpotQA is challenging for the latest QA systems, and the supporting facts enable models to improve performance and make explainable predictions.

0
4
下载
预览

Machine reading comprehension (MRC) requires reasoning about both the knowledge involved in a document and knowledge about the world. However, existing datasets are typically dominated by questions that can be well solved by context matching, which fail to test this capability. To encourage the progress on knowledge-based reasoning in MRC, we present knowledge-based MRC in this paper, and build a new dataset consisting of 40,047 question-answer pairs. The annotation of this dataset is designed so that successfully answering the questions requires understanding and the knowledge involved in a document. We implement a framework consisting of both a question answering model and a question generation model, both of which take the knowledge extracted from the document as well as relevant facts from an external knowledge base such as Freebase/ProBase/Reverb/NELL. Results show that incorporating side information from external KB improves the accuracy of the baseline question answer system. We compare it with a standard MRC model BiDAF, and also provide the difficulty of the dataset and lay out remaining challenges.

0
3
下载
预览

Humans gather information by engaging in conversations involving a series of interconnected questions and answers. For machines to assist in information gathering, it is therefore essential to enable them to answer conversational questions. We introduce CoQA, a novel dataset for building Conversational Question Answering systems. Our dataset contains 127k questions with answers, obtained from 8k conversations about text passages from seven diverse domains. The questions are conversational, and the answers are free-form text with their corresponding evidence highlighted in the passage. We analyze CoQA in depth and show that conversational questions have challenging phenomena not present in existing reading comprehension datasets, e.g., coreference and pragmatic reasoning. We evaluate strong conversational and reading comprehension models on CoQA. The best system obtains an F1 score of 65.1%, which is 23.7 points behind human performance (88.8%), indicating there is ample room for improvement. We launch CoQA as a challenge to the community at http://stanfordnlp.github.io/coqa/

0
7
下载
预览

In this paper, we analyze several neural network designs (and their variations) for sentence pair modeling and compare their performance extensively across eight datasets, including paraphrase identification, semantic textual similarity, natural language inference, and question answering tasks. Although most of these models have claimed state-of-the-art performance, the original papers often reported on only one or two selected datasets. We provide a systematic study and show that (i) encoding contextual information by LSTM and inter-sentence interactions are critical, (ii) Tree-LSTM does not help as much as previously claimed but surprisingly improves performance on Twitter datasets, (iii) the Enhanced Sequential Inference Model is the best so far for larger datasets, while the Pairwise Word Interaction Model achieves the best performance when less data is available. We release our implementations as an open-source toolkit.

0
7
下载
预览

We propose a two-stage neural model to tackle question generation from documents. First, our model estimates the probability that word sequences in a document are ones that a human would pick when selecting candidate answers by training a neural key-phrase extractor on the answers in a question-answering corpus. Predicted key phrases then act as target answers and condition a sequence-to-sequence question-generation model with a copy mechanism. Empirically, our key-phrase extraction model significantly outperforms an entity-tagging baseline and existing rule-based approaches. We further demonstrate that our question generation system formulates fluent, answerable questions from key phrases. This two-stage system could be used to augment or generate reading comprehension datasets, which may be leveraged to improve machine reading systems or in educational settings.

0
4
下载
预览

In recent years, there have been amazing advances in deep learning methods for machine reading. In machine reading, the machine reader has to extract the answer from the given ground truth paragraph. Recently, the state-of-the-art machine reading models achieve human level performance in SQuAD which is a reading comprehension-style question answering (QA) task. The success of machine reading has inspired researchers to combine information retrieval with machine reading to tackle open-domain QA. However, these systems perform poorly compared to reading comprehension-style QA because it is difficult to retrieve the pieces of paragraphs that contain the answer to the question. In this study, we propose two neural network rankers that assign scores to different passages based on their likelihood of containing the answer to a given question. Additionally, we analyze the relative importance of semantic similarity and word level relevance matching in open-domain QA.

0
5
下载
预览

Answering complex questions is a time-consuming activity for humans that requires reasoning and integration of information. Recent work on reading comprehension made headway in answering simple questions, but tackling complex questions is still an ongoing research challenge. Conversely, semantic parsers have been successful at handling compositionality, but only when the information resides in a target knowledge-base. In this paper, we present a novel framework for answering broad and complex questions, assuming answering simple questions is possible using a search engine and a reading comprehension model. We propose to decompose complex questions into a sequence of simple questions, and compute the final answer from the sequence of answers. To illustrate the viability of our approach, we create a new dataset of complex questions, ComplexWebQuestions, and present a model that decomposes questions and interacts with the web to compute an answer. We empirically demonstrate that question decomposition improves performance from 20.8 precision@1 to 27.5 precision@1 on this new dataset.

0
5
下载
预览

This paper gives comprehensive analyses of corpora based on Wikipedia for several tasks in question answering. Four recent corpora are collected,WikiQA, SelQA, SQuAD, and InfoQA, and first analyzed intrinsically by contextual similarities, question types, and answer categories. These corpora are then analyzed extrinsically by three question answering tasks, answer retrieval, selection, and triggering. An indexing-based method for the creation of a silver-standard dataset for answer retrieval using the entire Wikipedia is also presented. Our analysis shows the uniqueness of these corpora and suggests a better use of them for statistical question answering learning.

0
5
下载
预览

In this paper, we introduce DuReader, a new large-scale, open-domain Chinese machine reading comprehension (MRC) dataset, aiming to tackle real-world MRC problems. In comparison to prior datasets, DuReader has the following characteristics: (a) the questions and the documents are all extracted from real application data, and the answers are human generated; (b) it provides rich annotations for question types, especially yes-no and opinion questions, which take a large proportion in real users' questions but have not been well studied before; (c) it provides multiple answers for each question. The first release of DuReader contains 200k questions, 1,000k documents, and 420k answers, which, to the best of our knowledge, is the largest Chinese MRC dataset so far. Experimental results show there exists big gap between the state-of-the-art baseline systems and human performance, which indicates DuReader is a challenging dataset that deserves future study. The dataset and the code of the baseline systems are publicly available now.

0
3
下载
预览
小贴士
相关论文
Advances in Natural Language Question Answering: A Review
K. S. D. Ishwari,A. K. R. R. Aneeze,S. Sudheesan,H. J. D. A. Karunaratne,A. Nugaliyadde,Y. Mallawarrachchi
4+阅读 · 2019年4月10日
HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering
Zhilin Yang,Peng Qi,Saizheng Zhang,Yoshua Bengio,William W. Cohen,Ruslan Salakhutdinov,Christopher D. Manning
4+阅读 · 2018年9月25日
Knowledge Based Machine Reading Comprehension
Yibo Sun,Daya Guo,Duyu Tang,Nan Duan,Zhao Yan,Xiaocheng Feng,Bing Qin
3+阅读 · 2018年9月12日
CoQA: A Conversational Question Answering Challenge
Siva Reddy,Danqi Chen,Christopher D. Manning
7+阅读 · 2018年8月21日
Sandeep Subramanian,Tong Wang,Xingdi Yuan,Saizheng Zhang,Yoshua Bengio,Adam Trischler
4+阅读 · 2018年5月30日
Phu Mon Htut,Samuel R. Bowman,Kyunghyun Cho
5+阅读 · 2018年4月12日
Alon Talmor,Jonathan Berant
5+阅读 · 2018年3月18日
Tomasz Jurczyk,Amit Deshmane,Jinho Choi
5+阅读 · 2018年1月6日
Wei He,Kai Liu,Yajuan Lyu,Shiqi Zhao,Xinyan Xiao,Yuan Liu,Yizhong Wang,Hua Wu,Qiaoqiao She,Xuan Liu,Tian Wu,Haifeng Wang
3+阅读 · 2017年11月15日
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
7+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
26+阅读 · 2019年1月3日
RL 真经
CreateAMind
4+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
4+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
20+阅读 · 2018年9月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top