Machine reading comprehension (MRC) requires reasoning about both the knowledge involved in a document and knowledge about the world. However, existing datasets are typically dominated by questions that can be well solved by context matching, which fail to test this capability. To encourage the progress on knowledge-based reasoning in MRC, we present knowledge-based MRC in this paper, and build a new dataset consisting of 40,047 question-answer pairs. The annotation of this dataset is designed so that successfully answering the questions requires understanding and the knowledge involved in a document. We implement a framework consisting of both a question answering model and a question generation model, both of which take the knowledge extracted from the document as well as relevant facts from an external knowledge base such as Freebase/ProBase/Reverb/NELL. Results show that incorporating side information from external KB improves the accuracy of the baseline question answer system. We compare it with a standard MRC model BiDAF, and also provide the difficulty of the dataset and lay out remaining challenges.

3
下载
关闭预览

相关内容

包括微软、CMU、Stanford在内的顶级人工智能专家和学者们正在研究更复杂的任务:让机器像人类一样阅读文本,进而根据对该文本的理解来回答问题。这种阅读理解就像是让计算机来做我们高考英语的阅读理解题。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

Commonsense knowledge plays an important role when we read. The performance of BERT on SQuAD dataset shows that the accuracy of BERT can be better than human users. However, it does not mean that computers can surpass the human being in reading comprehension. CommonsenseQA is a large-scale dataset which is designed based on commonsense knowledge. BERT only achieved an accuracy of 55.9% on it. The result shows that computers cannot apply commonsense knowledge like human beings to answer questions. Comprehension Ability Test (CAT) divided the reading comprehension ability at four levels. We can achieve human like comprehension ability level by level. BERT has performed well at level 1 which does not require common knowledge. In this research, we propose a system which aims to allow computers to read articles and answer related questions with commonsense knowledge like a human being for CAT level 2. This system consists of three parts. Firstly, we built a commonsense knowledge graph; and then automatically constructed the commonsense knowledge question dataset according to it. Finally, BERT is combined with the commonsense knowledge to achieve the reading comprehension ability at CAT level 2. Experiments show that it can pass the CAT as long as the required common knowledge is included in the knowledge base.

0
3
下载
预览

This paper focuses on how to take advantage of external relational knowledge to improve machine reading comprehension (MRC) with multi-task learning. Most of the traditional methods in MRC assume that the knowledge used to get the correct answer generally exists in the given documents. However, in real-world task, part of knowledge may not be mentioned and machines should be equipped with the ability to leverage external knowledge. In this paper, we integrate relational knowledge into MRC model for commonsense reasoning. Specifically, based on a pre-trained language model (LM). We design two auxiliary relation-aware tasks to predict if there exists any commonsense relation and what is the relation type between two words, in order to better model the interactions between document and candidate answer option. We conduct experiments on two multi-choice benchmark datasets: the SemEval-2018 Task 11 and the Cloze Story Test. The experimental results demonstrate the effectiveness of the proposed method, which achieves superior performance compared with the comparable baselines on both datasets.

0
5
下载
预览

Recent progress in pretraining language models on large textual corpora led to a surge of improvements for downstream NLP tasks. Whilst learning linguistic knowledge, these models may also be storing relational knowledge present in the training data, and may be able to answer queries structured as "fill-in-the-blank" cloze statements. Language models have many advantages over structured knowledge bases: they require no schema engineering, allow practitioners to query about an open class of relations, are easy to extend to more data, and require no human supervision to train. We present an in-depth analysis of the relational knowledge already present (without fine-tuning) in a wide range of state-of-the-art pretrained language models. We find that (i) without fine-tuning, BERT contains relational knowledge competitive with traditional NLP methods that have some access to oracle knowledge, (ii) BERT also does remarkably well on open-domain question answering against a supervised baseline, and (iii) certain types of factual knowledge are learned much more readily than others by standard language model pretraining approaches. The surprisingly strong ability of these models to recall factual knowledge without any fine-tuning demonstrates their potential as unsupervised open-domain QA systems. The code to reproduce our analysis is available at https://github.com/facebookresearch/LAMA.

0
5
下载
预览

Machine reading comprehension have been intensively studied in recent years, and neural network-based models have shown dominant performances. In this paper, we present a Sogou Machine Reading Comprehension (SMRC) toolkit that can be used to provide the fast and efficient development of modern machine comprehension models, including both published models and original prototypes. To achieve this goal, the toolkit provides dataset readers, a flexible preprocessing pipeline, necessary neural network components, and built-in models, which make the whole process of data preparation, model construction, and training easier.

1
6
下载
预览

Visual question answering (VQA) demands simultaneous comprehension of both the image visual content and natural language questions. In some cases, the reasoning needs the help of common sense or general knowledge which usually appear in the form of text. Current methods jointly embed both the visual information and the textual feature into the same space. However, how to model the complex interactions between the two different modalities is not an easy task. In contrast to struggling on multimodal feature fusion, in this paper, we propose to unify all the input information by natural language so as to convert VQA into a machine reading comprehension problem. With this transformation, our method not only can tackle VQA datasets that focus on observation based questions, but can also be naturally extended to handle knowledge-based VQA which requires to explore large-scale external knowledge base. It is a step towards being able to exploit large volumes of text and natural language processing techniques to address VQA problem. Two types of models are proposed to deal with open-ended VQA and multiple-choice VQA respectively. We evaluate our models on three VQA benchmarks. The comparable performance with the state-of-the-art demonstrates the effectiveness of the proposed method.

0
3
下载
预览

Machine reading comprehension with unanswerable questions aims to abstain from answering when no answer can be inferred. In addition to extract answers, previous works usually predict an additional "no-answer" probability to detect unanswerable cases. However, they fail to validate the answerability of the question by verifying the legitimacy of the predicted answer. To address this problem, we propose a novel read-then-verify system, which not only utilizes a neural reader to extract candidate answers and produce no-answer probabilities, but also leverages an answer verifier to decide whether the predicted answer is entailed by the input snippets. Moreover, we introduce two auxiliary losses to help the reader better handle answer extraction as well as no-answer detection, and investigate three different architectures for the answer verifier. Our experiments on the SQuAD 2.0 dataset show that our system achieves a score of 74.2 F1 on the test set, achieving state-of-the-art results at the time of submission (Aug. 28th, 2018).

0
3
下载
预览

Although neural network approaches achieve remarkable success on a variety of NLP tasks, many of them struggle to answer questions that require commonsense knowledge. We believe the main reason is the lack of commonsense connections between concepts. To remedy this, we provide a simple and effective method that leverages external commonsense knowledge base such as ConceptNet. We pre-train direct and indirect relational functions between concepts, and show that these pre-trained functions could be easily added to existing neural network models. Results show that incorporating commonsense-based function improves the state-of-the-art on two question answering tasks that require commonsense reasoning. Further analysis shows that our system discovers and leverages useful evidences from an external commonsense knowledge base, which is missing in existing neural network models and help derive the correct answer.

0
5
下载
预览

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

0
9
下载
预览

Answering complex questions is a time-consuming activity for humans that requires reasoning and integration of information. Recent work on reading comprehension made headway in answering simple questions, but tackling complex questions is still an ongoing research challenge. Conversely, semantic parsers have been successful at handling compositionality, but only when the information resides in a target knowledge-base. In this paper, we present a novel framework for answering broad and complex questions, assuming answering simple questions is possible using a search engine and a reading comprehension model. We propose to decompose complex questions into a sequence of simple questions, and compute the final answer from the sequence of answers. To illustrate the viability of our approach, we create a new dataset of complex questions, ComplexWebQuestions, and present a model that decomposes questions and interacts with the web to compute an answer. We empirically demonstrate that question decomposition improves performance from 20.8 precision@1 to 27.5 precision@1 on this new dataset.

0
5
下载
预览

In this paper, we introduce DuReader, a new large-scale, open-domain Chinese machine reading comprehension (MRC) dataset, aiming to tackle real-world MRC problems. In comparison to prior datasets, DuReader has the following characteristics: (a) the questions and the documents are all extracted from real application data, and the answers are human generated; (b) it provides rich annotations for question types, especially yes-no and opinion questions, which take a large proportion in real users' questions but have not been well studied before; (c) it provides multiple answers for each question. The first release of DuReader contains 200k questions, 1,000k documents, and 420k answers, which, to the best of our knowledge, is the largest Chinese MRC dataset so far. Experimental results show there exists big gap between the state-of-the-art baseline systems and human performance, which indicates DuReader is a challenging dataset that deserves future study. The dataset and the code of the baseline systems are publicly available now.

0
3
下载
预览
小贴士
相关论文
Yidan Hu,Gongqi Lin,Yuan Miao,Chunyan Miao
3+阅读 · 2019年9月8日
Fabio Petroni,Tim Rocktäschel,Patrick Lewis,Anton Bakhtin,Yuxiang Wu,Alexander H. Miller,Sebastian Riedel
5+阅读 · 2019年9月4日
Jindou Wu,Yunlun Yang,Chao Deng,Hongyi Tang,Bingning Wang,Haoze Sun,Ting Yao,Qi Zhang
6+阅读 · 2019年3月28日
Hui Li,Peng Wang,Chunhua Shen,Anton van den Hengel
3+阅读 · 2018年11月29日
Minghao Hu,Furu Wei,Yuxing Peng,Zhen Huang,Nan Yang,Dongsheng Li
3+阅读 · 2018年11月15日
Wanjun Zhong,Duyu Tang,Nan Duan,Ming Zhou,Jiahai Wang,Jian Yin
5+阅读 · 2018年10月5日
Minghao Hu,Yuxing Peng,Zhen Huang,Xipeng Qiu,Furu Wei,Ming Zhou
9+阅读 · 2018年4月25日
Alon Talmor,Jonathan Berant
5+阅读 · 2018年3月18日
Wei He,Kai Liu,Yajuan Lyu,Shiqi Zhao,Xinyan Xiao,Yuan Liu,Yizhong Wang,Hua Wu,Qiaoqiao She,Xuan Liu,Tian Wu,Haifeng Wang
3+阅读 · 2017年11月15日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
9+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
6+阅读 · 2019年5月18日
搜狗开源机器阅读理解工具箱
专知
16+阅读 · 2019年5月16日
逆强化学习-学习人先验的动机
CreateAMind
5+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
39+阅读 · 2018年2月21日
可解释的CNN
CreateAMind
11+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
6+阅读 · 2017年9月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
26+阅读 · 2017年9月11日
Top