Synthetic image source attribution is a challenging task, especially in data scarcity conditions requiring few-shot or zero-shot classification capabilities. We present a new training-free one-shot attribution method based on image resynthesis. A prompt describing the image under analysis is generated, then it is used to resynthesize the image with all the candidate sources. The image is attributed to the model which produced the resynthesis closest to the original image in a proper feature space. We also introduce a new dataset for synthetic image attribution consisting of face images from commercial and open-source text-to-image generators. The dataset provides a challenging attribution framework, useful for developing new attribution models and testing their capabilities on different generative architectures. The dataset structure allows to test approaches based on resynthesis and to compare them to few-shot methods. Results from state-of-the-art few-shot approaches and other baselines show that the proposed resynthesis method outperforms existing techniques when only a few samples are available for training or fine-tuning. The experiments also demonstrate that the new dataset is a challenging one and represents a valuable benchmark for developing and evaluating future few-shot and zero-shot methods.
翻译:合成图像溯源是一项具有挑战性的任务,尤其在数据稀缺条件下需要具备少样本或零样本分类能力。本文提出一种基于图像重合成的免训练单样本溯源方法。首先生成描述待分析图像的提示词,随后利用该提示词通过所有候选生成源对图像进行重合成。通过在合适的特征空间中计算原始图像与重合成图像之间的相似度,将图像溯源至产生最接近重合成结果的生成模型。同时,本文构建了一个包含商业及开源文生图生成器人脸图像的新型合成图像溯源数据集。该数据集提供了具有挑战性的溯源框架,可用于开发新型溯源模型并测试其在不同生成架构上的性能。数据集结构支持基于重合成的方法测试,并可将其与少样本方法进行比较。实验结果表明:当仅有少量样本可用于训练或微调时,所提出的重合成方法优于现有技术。实验结果同时验证了新数据集的挑战性,为未来少样本与零样本方法的开发与评估提供了有价值的基准平台。