Community detection in citation networks offers a powerful approach to understanding knowledge flow and identifying core research areas within academic disciplines. This study focuses on knowledge source discovery in statistics by analyzing a weighted bipartite journal citation network constructed from 16,119 articles published in eight core journals from 2001 to 2023. To capture the inherent asymmetry of citation behavior, we explicitly preserve the bipartite structure of the network, distinguishing between citing and cited journals. For this task, we propose Bi-SCORE (Bipartite Spectral Clustering on Ratios-of-Eigenvectors), a computationally efficient and initialization-free spectral method designed for community detection in weighted bipartite networks with degree heterogeneity. We establish rigorous theoretical guarantees for the performance of Bi-SCORE under the weighted bipartite degree-corrected stochastic block model. Furthermore, simulation studies demonstrate its robustness across varying levels of sparsity and degree heterogeneity, where it outperforms existing methods. When applied to the real-world citation network, Bi-SCORE uncovers a six-community structure corresponding to key research areas in statistics, including applied statistics, methodology, theory, computation, and econometrics. These findings provide valuable insights into the intricate citation patterns and knowledge flow among statistical journals.
翻译:引文网络中的社区检测为理解知识流动和识别学科核心研究领域提供了有力方法。本研究通过分析一个加权二分期刊引文网络,聚焦于统计学领域的知识源发现。该网络基于2001年至2023年间八种核心期刊发表的16,119篇论文构建。为捕捉引文行为固有的非对称性,我们明确保留了网络的二分结构,区分施引期刊与被引期刊。针对此任务,我们提出了Bi-SCORE(基于特征向量比值的二分谱聚类)——一种计算高效且无需初始化的谱方法,专为具有度异质性的加权二分网络社区检测而设计。我们在加权二分度校正随机块模型下为Bi-SCORE的性能建立了严格的理论保证。此外,模拟研究证明了该方法在不同稀疏度与度异质性水平下的鲁棒性,其表现优于现有方法。当应用于真实引文网络时,Bi-SCORE揭示出对应统计学关键研究领域的六社区结构,包括应用统计、方法论、理论、计算和计量经济学。这些发现为理解统计期刊间复杂的引文模式与知识流动提供了有价值的见解。