We study the classic problem of dividing a collection of indivisible resources in a fair and efficient manner among a set of agents having varied preferences. Pareto optimality is a standard notion of economic efficiency, which states that it should be impossible to find an allocation that improves some agent's utility without reducing any other's. On the other hand, a fundamental notion of fairness in resource allocation settings is that of envy-freeness, which renders an allocation to be fair if every agent (weakly) prefers her own bundle over that of any other agent's bundle. Unfortunately, an envy-free allocation may not exist if we wish to divide a collection of indivisible items. Introducing randomness is a typical way of circumventing the non-existence of solutions, and therefore, allocation lotteries, i.e., distributions over allocations have been explored while relaxing the notion of fairness to ex-ante envy freeness. We consider a general fair division setting with $n$ agents and a family of admissible $n$-partitions of an underlying set of items. Every agent is endowed with partition-based utilities, which specify her cardinal utility for each bundle of items in every admissible partition. In such fair division instances, Cole and Tao (2021) have proved that an ex-ante envy-free and Pareto-optimal allocation lottery is always guaranteed to exist. We strengthen their result while examining the computational complexity of the above total problem and establish its membership in the complexity class PPAD. Furthermore, for instances with a constant number of agents, we develop a polynomial-time algorithm to find an ex-ante envy-free and Pareto-optimal allocation lottery. On the negative side, we prove that maximizing social welfare over ex-ante envy-free and Pareto-optimal allocation lotteries is NP-hard.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月15日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员