The diagnosis of most mental disorders, including psychiatric evaluations, primarily depends on dialogues between psychiatrists and patients. This subjective process can lead to variability in diagnoses across clinicians and patients, resulting in inconsistencies and challenges in achieving reliable outcomes. To address these issues and standardize psychiatric diagnoses, we propose a Fine-Tuned Large Language Model (LLM) Consortium and OpenAI-gpt-oss Reasoning LLM-enabled Decision Support System for the clinical diagnosis of mental disorders. Our approach leverages fine-tuned LLMs trained on conversational datasets involving psychiatrist-patient interactions focused on mental health conditions (e.g., depression). The diagnostic predictions from individual models are aggregated through a consensus-based decision-making process, refined by the OpenAI-gpt-oss reasoning LLM. We propose a novel method for deploying LLM agents that orchestrate communication between the LLM consortium and the reasoning LLM, ensuring transparency, reliability, and responsible AI across the entire diagnostic workflow. Experimental results demonstrate the transformative potential of combining fine-tuned LLMs with a reasoning model to create a robust and highly accurate diagnostic system for mental health assessment. A prototype of the proposed platform, integrating three fine-tuned LLMs with the OpenAI-gpt-oss reasoning LLM, was developed in collaboration with the U.S. Army Medical Research Team in Norfolk, Virginia, USA. To the best of our knowledge, this work represents the first application of a fine-tuned LLM consortium integrated with a reasoning LLM for clinical mental health diagnosis paving the way for next-generation AI-powered eHealth systems aimed at standardizing psychiatric diagnoses.


翻译:大多数精神障碍(包括精神科评估)的诊断主要依赖于精神科医生与患者之间的对话。这种主观过程可能导致不同临床医生和患者之间的诊断存在差异,从而造成结果不一致且难以获得可靠结论。为解决这些问题并实现精神疾病诊断的标准化,我们提出了一种基于微调大语言模型联盟与OpenAI-gpt-oss推理大语言模型的决策支持系统,用于精神障碍的临床诊断。我们的方法利用在精神科医患对话数据集上微调的大语言模型,这些数据集专注于心理健康状况(如抑郁症)。各模型的诊断预测通过基于共识的决策流程进行聚合,并由OpenAI-gpt-oss推理大语言模型进行优化。我们提出了一种新颖的大语言模型智能体部署方法,用于协调大语言模型联盟与推理大语言模型之间的通信,确保整个诊断工作流程的透明度、可靠性及负责任的人工智能应用。实验结果表明,将微调大语言模型与推理模型相结合,能够构建出稳健且高精度的心理健康评估诊断系统,具有变革性潜力。我们与美国弗吉尼亚州诺福克陆军医学研究团队合作,开发了一个集成三个微调大语言模型与OpenAI-gpt-oss推理大语言模型的平台原型。据我们所知,本研究首次将微调大语言模型联盟与推理大语言模型集成应用于临床心理健康诊断,为旨在标准化精神疾病诊断的下一代人工智能驱动电子健康系统开辟了道路。

0
下载
关闭预览

相关内容

大语言模型是基于海量文本数据训练的深度学习模型。它不仅能够生成自然语言文本,还能够深入理解文本含义,处理各种自然语言任务,如文本摘要、问答、翻译等。2023年,大语言模型及其在人工智能领域的应用已成为全球科技研究的热点,其在规模上的增长尤为引人注目,参数量已从最初的十几亿跃升到如今的一万亿。参数量的提升使得模型能够更加精细地捕捉人类语言微妙之处,更加深入地理解人类语言的复杂性。在过去的一年里,大语言模型在吸纳新知识、分解复杂任务以及图文对齐等多方面都有显著提升。随着技术的不断成熟,它将不断拓展其应用范围,为人类提供更加智能化和个性化的服务,进一步改善人们的生活和生产方式。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员