Deep learning-based malware detection systems are vulnerable to adversarial EXEmples - carefully-crafted malicious programs that evade detection with minimal perturbation. As such, the community is dedicating effort to develop mechanisms to defend against adversarial EXEmples. However, current randomized smoothing-based defenses are still vulnerable to attacks that inject blocks of adversarial content. In this paper, we introduce a certifiable defense against patch attacks that guarantees, for a given executable and an adversarial patch size, no adversarial EXEmple exist. Our method is inspired by (de)randomized smoothing which provides deterministic robustness certificates. During training, a base classifier is trained using subsets of continguous bytes. At inference time, our defense splits the executable into non-overlapping chunks, classifies each chunk independently, and computes the final prediction through majority voting to minimize the influence of injected content. Furthermore, we introduce a preprocessing step that fixes the size of the sections and headers to a multiple of the chunk size. As a consequence, the injected content is confined to an integer number of chunks without tampering the other chunks containing the real bytes of the input examples, allowing us to extend our certified robustness guarantees to content insertion attacks. We perform an extensive ablation study, by comparing our defense with randomized smoothing-based defenses against a plethora of content manipulation attacks and neural network architectures. Results show that our method exhibits unmatched robustness against strong content-insertion attacks, outperforming randomized smoothing-based defenses in the literature.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员