We study the use of machine learning techniques to solve a fundamental shortest path problem, known as the single-source many-targets shortest path problem (SSMTSP). Given a directed graph with non-negative edge weights, our goal is to compute a shortest path from a given source node to any of several target nodes. Basically, our idea is to equip an adapted version of Dijkstras algorithm with machine learning predictions to solve this problem: Based on the trace of the algorithm, we design a neural network that predicts the shortest path distance after a few iterations. The prediction is then used to prune the search space explored by Dijkstras algorithm, which may significantly reduce the number of operations on the underlying priority queue. We note that our algorithm works independently of the specific method that is used to arrive at such predictions. Crucially, we require that our algorithm always computes an optimal solution (independently of the accuracy of the prediction) and provides a certificate of optimality. As we show, in the worst-case this might force our algorithm to use the same number of queue operations as Dijkstras algorithm, even if the prediction is correct. In general, however, our algorithm may save a significant fraction of the priority queue operations. We derive structural insights that allow us to lower bound these savings on partial random instances. In these instances, an adversary can fix the instance arbitrarily except for the weights of a subset of relevant edges, which are chosen randomly. Our bound shows that the number of relevant edges which are pruned increases as the prediction error decreases. We then use these insights to derive closed-form expressions of the expected number of saved queue operations on random instances.


翻译:我们研究如何使用机器学习技术来解决一个基本最短路径问题,称为单源多目标最短路径问题(SSMTSP)。根据一个带有非负边缘重量的定向图表,我们的目标是从给定源节点到任何几个目标节点计算一条最短路径。基本上,我们的想法是用机器学习预测来解决这个问题的改良版本Dijkstras算法:根据算法的痕量,我们设计了一个神经网络,预测几个迭杰克斯塔斯算法之后最短路径的距离。然后,预测用于利用Dijkstras算法探索的搜索空间,这可能会显著减少底端优先队列排序的操作数量。我们注意到,我们的算法是独立于用来作出这种预测的具体方法之外的最短路径。我们要求我们的算法总是用一个最佳的解决方案(取决于预测的准确性)来解决这个问题,然后提供一个最优化的证书。在最坏的情况下,我们显示,这可能会迫使我们的算法以相同数量递减队列操作的精度,作为Dijkksstra 的精度排序算法,但是,我们也可以用一个更精确的预估的精度算。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员