Conventional Magnetic Resonance Imaging (MRI) is hampered by long scan times and only qualitative image contrasts that prohibit a direct comparison between different systems. To address these limitations, model-based reconstructions explicitly model the physical laws that govern the MRI signal generation. By formulating image reconstruction as an inverse problem, quantitative maps of the underlying physical parameters can then be extracted directly from efficiently acquired k-space signals without intermediate image reconstruction -- addressing both shortcomings of conventional MRI at the same time. This review will discuss basic concepts of model-based reconstructions and report about our experience in developing several model-based methods over the last decade using selected examples that are provided complete with data and code.


翻译:常规磁共振成像(MRI)受到长扫描时间的阻碍,只有定性图像对比才能禁止对不同系统进行直接比较。为解决这些局限性,基于模型的重建明确模拟管理MRI信号生成的物理法律。通过将图像重建作为反向问题进行设计,然后可以直接从有效获得的K-空间信号中提取基本物理参数的定量地图,而不进行中间图像重建,同时解决常规的MRI的缺陷。本审查将讨论基于模型的重建的基本概念,并报告我们在过去十年中利用一些附有数据和代码的选定实例制定若干基于模型的方法的经验。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员