The control and mitigation of MHD oscillations modes is an open problem in fusion science because they can contribute to the outward particle/energy flux and can drive the device away from ignition conditions. It is then of general interest to extract the mode information from large experimental databases in a fast and reliable way. We present a software tool based on Deep Learning that can identify these oscillations modes taking Mirnov coil spectrograms as input data. It uses Convolutional Neural Networks that we trained with manually annotated spectrograms from the TJ-II stellarator database. We have tested several detector architectures, resultingin a detector AUC score of 0.99 on the test set. Finally, it is applied to find MHD modes in our spectrograms to show how this new software tool can be used to mine other databases.
翻译:MHD振荡模式的控制和减缓是聚变科学中的一个公开问题,因为这些模式有助于外向粒子/能量通量,能够将装置从点火条件下驱离出去。然后,以迅速可靠的方式从大型实验数据库中提取模式信息是普遍感兴趣的。我们根据深层学习提供了一种软件工具,可以识别这些振荡模式,将Mirnov coil光谱作为输入数据。它使用我们用TJ-II星光仪数据库的人工附加光谱培训的动态神经网络。我们已经测试了几个探测器结构,从而在测试集中得出了0.99的AUC分。最后,我们应用该软件在光谱中找到MHD模式,以显示如何将这一新软件工具用于其他数据库。