Deep learning has proven to be a highly effective problem-solving tool for object detection and image segmentation across various domains such as healthcare and autonomous driving. At the heart of this performance lies neural architecture design which relies heavily on domain knowledge and prior experience on the researchers' behalf. More recently, this process of finding the most optimal architectures, given an initial search space of possible operations, was automated by Neural Architecture Search (NAS). In this paper, we evaluate the robustness of one such algorithm known as Efficient NAS (ENAS) against data agnostic poisoning attacks on the original search space with carefully designed ineffective operations. By evaluating algorithm performance on the CIFAR-10 dataset, we empirically demonstrate how our novel search space poisoning (SSP) approach and multiple-instance poisoning attacks exploit design flaws in the ENAS controller to result in inflated prediction error rates for child networks. Our results provide insights into the challenges to surmount in using NAS for more adversarially robust architecture search.
翻译:深层学习被证明是一个在医疗保健和自主驾驶等不同领域进行物体探测和图像分割的非常有效的解决问题工具。 性能的核心在于神经结构设计,这种设计在很大程度上依赖领域知识以及研究人员以往的经验。 最近,在初步搜索可能操作的空间的情况下,这一寻找最优化结构的过程由神经结构搜索(NAS)自动化。 在本文件中,我们评估了一种被称为“高效NAS(ENAS)”的算法的稳健性,以对抗对原始搜索空间的敏感中毒攻击数据,而该搜索空间则经过精心设计的无效操作。 通过评估CIFAR-10数据集的算法性表现,我们从经验上展示了我们新颖的搜索空间中毒(SSP)方法和多次中毒袭击是如何利用ENAS控制器的设计缺陷,导致儿童网络预测错误率的膨胀。我们的结果为利用NAS进行更强大的对抗性建筑搜索提供了应对挑战的洞察力。