Deep learning has proven to be a highly effective problem-solving tool for object detection and image segmentation across various domains such as healthcare and autonomous driving. At the heart of this performance lies neural architecture design which relies heavily on domain knowledge and prior experience on the researchers' behalf. More recently, this process of finding the most optimal architectures, given an initial search space of possible operations, was automated by Neural Architecture Search (NAS). In this paper, we evaluate the robustness of one such algorithm known as Efficient NAS (ENAS) against data agnostic poisoning attacks on the original search space with carefully designed ineffective operations. By evaluating algorithm performance on the CIFAR-10 dataset, we empirically demonstrate how our novel search space poisoning (SSP) approach and multiple-instance poisoning attacks exploit design flaws in the ENAS controller to result in inflated prediction error rates for child networks. Our results provide insights into the challenges to surmount in using NAS for more adversarially robust architecture search.


翻译:深层学习被证明是一个在医疗保健和自主驾驶等不同领域进行物体探测和图像分割的非常有效的解决问题工具。 性能的核心在于神经结构设计,这种设计在很大程度上依赖领域知识以及研究人员以往的经验。 最近,在初步搜索可能操作的空间的情况下,这一寻找最优化结构的过程由神经结构搜索(NAS)自动化。 在本文件中,我们评估了一种被称为“高效NAS(ENAS)”的算法的稳健性,以对抗对原始搜索空间的敏感中毒攻击数据,而该搜索空间则经过精心设计的无效操作。 通过评估CIFAR-10数据集的算法性表现,我们从经验上展示了我们新颖的搜索空间中毒(SSP)方法和多次中毒袭击是如何利用ENAS控制器的设计缺陷,导致儿童网络预测错误率的膨胀。我们的结果为利用NAS进行更强大的对抗性建筑搜索提供了应对挑战的洞察力。

0
下载
关闭预览

相关内容

【CHI2021】可解释人工智能导论
专知会员服务
119+阅读 · 2021年5月25日
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
44+阅读 · 2020年10月31日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
VALSE Webinar 19-05期 自动机器学习 AutoML
VALSE
8+阅读 · 2019年2月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
8+阅读 · 2020年6月15日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关VIP内容
【CHI2021】可解释人工智能导论
专知会员服务
119+阅读 · 2021年5月25日
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
44+阅读 · 2020年10月31日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
相关资讯
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
VALSE Webinar 19-05期 自动机器学习 AutoML
VALSE
8+阅读 · 2019年2月28日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员