Mathematical reasoning serves as a crucial testbed for evaluating the intelligence of large language models (LLMs), and math word problems (MWPs) represent one of the most widely used formats. Most existing MWP datasets contain only the necessary information, while problems with distracting or excessive conditions are often overlooked. Prior studies have shown that popular LLMs experience a dramatic performance drop when such distracting conditions are introduced. However, available datasets of MWPs with distracting conditions remain limited, and most exhibit low difficulty and out-of-context expressions. These shortcomings make the distracting conditions easy to detect and disregard, thereby reducing the credibility of benchmarking on these datasets. Moreover, when distracting conditions are added, the reasoning process and answers may change, requiring intensive manual effort to check and rewrite solutions. To address these issues, we design an iterative framework that leverages LLMs to generate distracting conditions automatically. We develop a set of prompts to revise MWPs from multiple perspectives and cognitive levels, encouraging the creation of meaningful distracting conditions as well as suggestions for further refinement. A key advantage of our framework is the preservation of shared solutions between the original and revised problems: the LLMs are explicitly guided to generate distractions that do not alter the original solution, thus eliminating the need to produce new answers. This framework is efficient and easy to deploy, substantially reducing the effort required to generate MWPs with distracting conditions while maintaining high data quality.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员