The emergence of Large Language Models presents a remarkable opportunity for humanities and social science research. I argue these technologies instantiate what I have called the algorithmic condition, whereby computational systems increasingly mediate not just our analytical tools but how we understand nature and society more generally. This article introduces the possibility for new forms of humanistic inquiry through what I term 'AI sprints', as intensive time-boxed research sessions. This is a research method combining the critical reflexivity essential to humanistic inquiry with iterative dialogue with generative AI. Drawing on experimental work in critical code studies, I demonstrate how tight loops of iterative development can adapt data and book sprint methodologies whilst acknowledging the profound transformations generative AI introduces. Through examining the process of human-AI collaboration when undertaken in these intensive research sessions, I seek to outline this approach as a broader research method. The article builds on Rogers' digital methods approach, proposing that we extend methodologies to study digital objects through their native protocols, using AI systems not merely to process digital traces but to analyse materials traditionally requiring manual coding or transcription. I aim to show this by introducing three cognitive modes, cognitive delegation, productive augmentation, and cognitive overhead, explaining how researchers can maintain a strategic overview whilst using LLM capabilities. The paper contributes both a practical methodology for intensive AI-augmented research and a theoretical framework for understanding the epistemological transformations of this hybrid method. A critical methodology must therefore operate in both technical and theoretical registers, sustaining a rigorous ethical-computational engagement with AI systems and outputs.
翻译:大型语言模型的出现为人文社会科学研究提供了重要机遇。本文认为,这些技术实例化了我所称的算法化境况——计算系统不仅日益成为我们的分析工具,更广泛地中介着我们对自然与社会的理解。本文通过提出'AI冲刺'这一密集型限时研究模式,探讨人文探究新形式的可能性。该方法将人文研究必备的批判反思性与生成式AI的迭代对话相结合。借鉴批判性代码研究中的实验成果,本文论证了迭代开发的紧密循环如何能适配数据与图书冲刺方法论,同时承认生成式AI带来的深刻变革。通过考察密集型研究环节中人机协作的过程,本文试图勾勒出这一更广泛的研究方法。文章基于罗杰斯的数字方法论,主张通过数字对象的原生协议扩展研究方法论,使AI系统不仅处理数字痕迹,更能分析传统上需要人工编码或转录的材料。为此,本文引入三种认知模式——认知委托、生产性增强与认知负荷,阐释研究者如何在运用大语言模型能力时保持战略纵览。本文既贡献了AI增强型密集型研究的实践方法,也提供了理解这种混合方法认识论变革的理论框架。因此,批判性方法论必须在技术与理论双重维度上运作,保持对AI系统及其产出的严谨伦理-计算性介入。