A longstanding open question in algorithm design is whether "combinatorial" matrix multiplication algorithms -- avoiding Strassen-like divide-and-conquer -- can achieve truly subcubic runtime $n^{3-\delta}$. We present an $O(n^{2.89})$-time exact algorithm, which only sums convolutions in $\mathbb{Z}_m^k$ (multivariate polynomial multiplications) via FFT, building on the work of Cohn, Kleinberg, Szegedy and Umans (CKSU'05). While the algorithm avoids recursion, the asymptotic speedup arises only for impractically large matrices. Motivated by practical applications, we use this baseline to develop a new framework for fast approximate matrix multiplication (AMM), via low-degree approximations of the CKSU polynomials. We show that combining the aforementioned algorithm with black-box linear sketching already breaks the longstanding linear speed-accuracy tradeoff for AMM (Sarlos'06, Clarkson-Woodruff'13 ,Pagh'11, Cohn-Lewis'00), achieving $\frac{1}{r^{1.1}}\|\mathbf{A}\|_F^2\|\mathbf{B}\|_F^2$ error in $O(rn^2)$-time. Our main result is a low-degree approximation scheme for the CKSU polynomials, based on a Fourier-concentration lemma, yielding substantially smaller error in the distributional setting where $\mathbf{A},\mathbf{B}$ come from an i.i.d product-distribution; For random Gaussian matrices, this practical AMM algorithm attains smaller error than the best rank-$r$ SVD of the output matrix $\mathbf{A}\mathbf{B}$, in time $O(rn^2)$. This is a substantial improvement over iterative Krylov subspace methods for low-rank approximation. Our theoretical and empirical results suggest the possibility of replacing MatMuls with sums of convolutions in LLM training and inference.
翻译:算法设计中一个长期存在的开放问题是:避免使用Strassen式分治的"组合"矩阵乘法算法能否实现真正的次立方运行时间$n^{3-\delta}$。基于Cohn、Kleinberg、Szegedy和Umans(CKSU'05)的工作,我们提出了一种$O(n^{2.89})$时间的精确算法,该算法仅通过FFT对$\mathbb{Z}_m^k$中的卷积(多元多项式乘法)进行求和。虽然该算法避免了递归,但其渐近加速仅对不切实际的大规模矩阵有效。受实际应用驱动,我们以此为基础,通过CKSU多项式的低次近似,开发了一个新的快速近似矩阵乘法(AMM)框架。我们证明,将上述算法与黑盒线性草图技术结合,已能突破AMM领域长期存在的线性速度-精度权衡(Sarlos'06, Clarkson-Woodruff'13, Pagh'11, Cohn-Lewis'00),在$O(rn^2)$时间内实现$\frac{1}{r^{1.1}}\|\mathbf{A}\|_F^2\|\mathbf{B}\|_F^2$的误差。我们的主要成果是基于傅里叶集中性引理,为CKSU多项式设计了一种低次近似方案,在$\mathbf{A},\mathbf{B}$来自独立同分布乘积分布的设定下,该方案能显著降低误差;对于随机高斯矩阵,这种实用的AMM算法在$O(rn^2)$时间内获得的误差,小于输出矩阵$\mathbf{A}\mathbf{B}$的最佳秩-$r$奇异值分解(SVD)的误差。这相较于低秩近似的迭代Krylov子空间方法是一个重大改进。我们的理论与实证结果表明,在大语言模型训练与推理中,用卷积和替代矩阵乘法具有可行性。