We present a conditional diffusion model - ConDiSim, for simulation-based inference of complex systems with intractable likelihoods. ConDiSim leverages denoising diffusion probabilistic models to approximate posterior distributions, consisting of a forward process that adds Gaussian noise to parameters, and a reverse process learning to denoise, conditioned on observed data. This approach effectively captures complex dependencies and multi-modalities within posteriors. ConDiSim is evaluated across ten benchmark problems and two real-world test problems, where it demonstrates effective posterior approximation accuracy while maintaining computational efficiency and stability in model training. ConDiSim offers a robust and extensible framework for simulation-based inference, particularly suitable for parameter inference workflows requiring fast inference methods.
翻译:本文提出了一种条件扩散模型——ConDiSim,用于对具有难处理似然函数的复杂系统进行基于仿真的推理。ConDiSim利用去噪扩散概率模型来近似后验分布,该模型包含一个向参数添加高斯噪声的前向过程,以及一个学习在观测数据条件下进行去噪的反向过程。该方法能有效捕捉后验分布中复杂的依赖关系和多模态特性。ConDiSim在十个基准问题和两个实际测试问题上进行了评估,结果表明其在保持模型训练的计算效率与稳定性的同时,实现了有效的后验近似精度。ConDiSim为基于仿真的推理提供了一个稳健且可扩展的框架,特别适用于需要快速推理方法的参数推断工作流程。