This thesis deals with shape optimization for contact mechanics. More specifically, the linear elasticity model is considered under the small deformations hypothesis, and the elastic body is assumed to be in contact (sliding or with Tresca friction) with a rigid foundation. The mathematical formulations studied are two regularized versions of the original variational inequality: the penalty formulation and the augmented Lagrangian formulation. In order to get the shape derivatives associated to those two non-differentiable formulations, we suggest an approach based on directional derivatives. Especially, we derive sufficient conditions for the solution to be shape differentiable. This allows to develop a gradient-based topology optimization algorithm, built on these derivatives and a level-set representation of shapes. The algorithm also benefits from a mesh-cutting technique, which gives an explicit representation of the shape at each iteration, and enables to apply the boundary conditions strongly on the contact zone. The different steps of the method are detailed. Then, to validate the approach, some numerical results on two-dimensional and three-dimensional benchmarks are presented.


翻译:更具体地说,线性弹性模型是在小变形假设下考虑的,而弹性体则假定与僵硬基础接触(滑动或与Tresca摩擦),研究的数学配方是最初变异性不平等的两个正规版本:惩罚配方和增强的Lagrangian配方。为了获得与这两种无差别配方相关的形状衍生物,我们建议一种基于定向衍生物的方法。特别是,我们为该解决方案的形成提供了足够的条件,以便形成不同的方位。这样可以开发一种基于梯度的表层优化算法,以这些衍生物为基础,并形成一个定级形状的表示法。算法还得益于网状切除技术,在每一次迭代方上明确显示形状,并能够在接触区大力应用边界条件。该方法的不同步骤是详尽的。然后,为了验证该方法,提出了二维和三维基准的一些数字结果。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月16日
Arxiv
23+阅读 · 2021年12月19日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员