We consider the $k$-min-sum-radii ($k$-MSR) clustering problem with fairness constraints. The $k$-min-sum-radii problem is a mixture of the classical $k$-center and $k$-median problems. We are given a set of points $P$ in a metric space and a number $k$ and aim to partition the points into $k$ clusters, each of the clusters having one designated center. The objective to minimize is the sum of the radii of the $k$ clusters (where in $k$-center we would only consider the maximum radius and in $k$-median we would consider the sum of the individual points' costs). Various notions of fair clustering have been introduced lately, and we follow the definitions due to Chierichetti, Kumar, Lattanzi and Vassilvitskii [NeurIPS 2017] which demand that cluster compositions shall follow the proportions of the input point set with respect to some given sensitive attribute. For the easier case where the sensitive attribute only has two possible values and each is equally frequent in the input, the aim is to compute a clustering where all clusters have a 1:1 ratio with respect to this attribute. We call this the 1:1 case. There has been a surge of FPT-approximation algorithms for the $k$-MSR problem lately, solving the problem both in the unconstrained case and in several constrained problem variants. We add to this research area by designing an FPT $(6+\epsilon)$-approximation that works for $k$-MSR under the mentioned general fairness notion. For the special 1:1 case, we improve our algorithm to achieve a $(3+\epsilon)$-approximation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年11月7日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员