Learning embedding table plays a fundamental role in Click-through rate(CTR) prediction from the view of the model performance and memory usage. The embedding table is a two-dimensional tensor, with its axes indicating the number of feature values and the embedding dimension, respectively. To learn an efficient and effective embedding table, recent works either assign various embedding dimensions for feature fields and reduce the number of embeddings respectively or mask the embedding table parameters. However, all these existing works cannot get an optimal embedding table. On the one hand, various embedding dimensions still require a large amount of memory due to the vast number of features in the dataset. On the other hand, decreasing the number of embeddings usually suffers from performance degradation, which is intolerable in CTR prediction. Finally, pruning embedding parameters will lead to a sparse embedding table, which is hard to be deployed. To this end, we propose an optimal embedding table learning framework OptEmbed, which provides a practical and general method to find an optimal embedding table for various base CTR models. Specifically, we propose pruning the redundant embeddings regarding corresponding features' importance by learnable pruning thresholds. Furthermore, we consider assigning various embedding dimensions as one single candidate architecture. To efficiently search the optimal embedding dimensions, we design a uniform embedding dimension sampling scheme to equally train all candidate architectures, meaning architecture-related parameters and learnable thresholds are trained simultaneously in one supernet. We then propose an evolution search method based on the supernet to find the optimal embedding dimensions for each field. Experiments on public datasets show that OptEmbed can learn a compact embedding table which can further improve the model performance.
翻译:学习一个高效有效的嵌入表, 最近的工作要么为功能字段指定了不同的嵌入维度, 减少嵌入表参数的数量, 要么掩盖嵌入表参数的数量。 然而, 所有这些现有工程都无法获得一个最佳嵌入表。 一方面, 各种嵌入维仍需要大量的内存, 因为数据集中存在大量功能。 另一方面, 嵌入的缩入维是一个二维的反射度, 其轴轴分别显示特性值的数量和嵌入维度。 要学习一个稀疏的嵌入表, 很难进行部署。 我们建议一个最佳的嵌入表学习框架 OptEmbed, 这为找到一个最佳的 CTR 模型的嵌入表提供了实用和一般的方法 。 具体地说, 我们提议, 将嵌入的缩入数量减少通常因性降解而受到影响, 这在 CTR 预测中是不可容忍的。 最后, 嵌入参数将导致一个稀薄嵌入的嵌入参数导致一个精细化的嵌入维度, 通过学习一个最优化的模板, 我们从中学习一个最优化的嵌入的模型, 。