This article is about finding the limit set for banded Toeplitz matrices. Our main result is a new approach to approximate the limit set $\Lambda(b)$ where $b$ is the symbol of the banded Toeplitz matrix. The new approach is geometrical and based on the formula $\Lambda(b) = \cap_{\rho \in (0, \infty)} \text{sp } T(b_\rho)$, where $\rho$ is a scaling factor, i.e. $b_\rho(t) := b(\rho t)$, and $\text{sp }(\cdot)$ denotes the spectrum. We show that the full intersection can be approximated by the intersection for a finite number of $\rho$'s, and that the intersection of polygon approximations for $\text{sp } T(b_\rho)$ yields an approximating polygon for $\Lambda(b)$ that converges to $\Lambda(b)$ in the Hausdorff metric. Further, we show that one can slightly expand the polygon approximations for $\text{sp } T(b_\rho)$ to ensure that they contain $\text{sp } T(b_\rho)$. Then, taking the intersection yields an approximating superset of $\Lambda(b)$ which converges to $\Lambda(b)$ in the Hausdorff metric, and is guaranteed to contain $\Lambda(b)$. Combining the established algebraic (root-finding) method with our approximating superset, we are able to give an explicit bound on the Hausdorff distance to the true limit set. We implement the algorithm in Python and test it. It performs on par to and better in some cases than existing algorithms. We argue, but do not prove, that the average time complexity of the algorithm is $O(n^2 + mn\log m)$, where $n$ is the number of $\rho$'s and $m$ is the number of vertices for the polygons approximating $\text{sp } T(b_\rho)$. Further, we argue that the distance from $\Lambda(b)$ to both the approximating polygon and the approximating superset decreases as $O(1/\sqrt{k})$ for most of $\Lambda(b)$, where $k$ is the number of elementary operations required by the algorithm.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
57+阅读 · 2022年1月5日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
16+阅读 · 2022年5月17日
Arxiv
57+阅读 · 2022年1月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员