Backward error analysis offers a method for assessing the quality of numerical programs in the presence of floating-point rounding errors. However, techniques from the numerical analysis literature for quantifying backward error require substantial human effort, and there are currently no tools or automated methods for statically deriving sound backward error bounds. To address this gap, we propose Bean, a typed first-order programming language designed to express quantitative bounds on backward error. Bean's type system combines a graded coeffect system with strict linearity to soundly track the flow of backward error through programs. We prove the soundness of our system using a novel categorical semantics, where every Bean program denotes a triple of related transformations that together satisfy a backward error guarantee. To illustrate Bean's potential as a practical tool for automated backward error analysis, we implement a variety of standard algorithms from numerical linear algebra in Bean, establishing fine-grained backward error bounds via typing in a compositional style. We also develop a prototype implementation of Bean that infers backward error bounds automatically. Our evaluation shows that these inferred bounds match worst-case theoretical relative backward error bounds from the literature, underscoring Bean's utility in validating a key property of numerical programs: numerical stability.


翻译:后向误差分析为评估存在浮点舍入误差时的数值程序质量提供了一种方法。然而,数值分析文献中用于量化后向误差的技术需要大量人工投入,且目前尚无能够静态推导可靠后向误差界的工具或自动化方法。为填补这一空白,我们提出Bean,一种类型化的一阶编程语言,旨在表达后向误差的定量界。Bean的类型系统结合了分级共效应系统与严格线性性,以可靠地追踪程序中后向误差的传播。我们通过一种新颖的范畴语义证明了该系统的可靠性,其中每个Bean程序表示一个满足后向误差保证的三重相关变换。为展示Bean作为自动化后向误差分析实用工具的潜力,我们在Bean中实现了多种来自数值线性代数的标准算法,并通过类型系统以组合式风格建立了细粒度的后向误差界。我们还开发了Bean的原型实现,能够自动推断后向误差界。评估结果表明,这些推断的误差界与文献中的最坏情况理论相对后向误差界相符,从而验证了Bean在确认数值程序关键特性——数值稳定性方面的实用性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员