This paper proposes a LiDAR-based goal-seeking and exploration framework, addressing the efficiency of online obstacle avoidance in unstructured environments populated with static and moving obstacles. This framework addresses two significant challenges associated with traditional dynamic control barrier functions (D-CBFs): their online construction and the diminished real-time performance caused by utilizing multiple D-CBFs. To tackle the first challenge, the framework's perception component begins with clustering point clouds via the DBSCAN algorithm, followed by encapsulating these clusters with the minimum bounding ellipses (MBEs) algorithm to create elliptical representations. By comparing the current state of MBEs with those stored from previous moments, the differentiation between static and dynamic obstacles is realized, and the Kalman filter is utilized to predict the movements of the latter. Such analysis facilitates the D-CBF's online construction for each MBE. To tackle the second challenge, we introduce buffer zones, generating Type-II D-CBFs online for each identified obstacle. Utilizing these buffer zones as activation areas substantially reduces the number of D-CBFs that need to be activated. Upon entering these buffer zones, the system prioritizes safety, autonomously navigating safe paths, and hence referred to as the exploration mode. Exiting these buffer zones triggers the system's transition to goal-seeking mode. We demonstrate that the system's states under this framework achieve safety and asymptotic stabilization. Experimental results in simulated and real-world environments have validated our framework's capability, allowing a LiDAR-equipped mobile robot to efficiently and safely reach the desired location within dynamic environments containing multiple obstacles.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员