The Reinforcement Learning (RL) algorithm, renowned for its robust learning capability and search stability, has garnered significant attention and found extensive application in Automated Guided Vehicle (AGV) path planning. However, RL planning algorithms encounter challenges stemming from the substantial variance of neural networks caused by environmental instability and significant fluctuations in system structure. These challenges manifest in slow convergence speed and low learning efficiency. To tackle this issue, this paper presents the Particle Filter-Double Deep Q-Network (PF-DDQN) approach, which incorporates the Particle Filter (PF) into multi-AGV reinforcement learning path planning. The PF-DDQN method leverages the imprecise weight values of the network as state values to formulate the state space equation. Through the iterative fusion process of neural networks and particle filters, the DDQN model is optimized to acquire the optimal true weight values, thus enhancing the algorithm's efficiency. The proposed method's effectiveness and superiority are validated through numerical simulations. Overall, the simulation results demonstrate that the proposed algorithm surpasses the traditional DDQN algorithm in terms of path planning superiority and training time indicators by 92.62% and 76.88%, respectively. In conclusion, the PF-DDQN method addresses the challenges encountered by RL planning algorithms in AGV path planning. By integrating the Particle Filter and optimizing the DDQN model, the proposed method achieves enhanced efficiency and outperforms the traditional DDQN algorithm in terms of path planning superiority and training time indicators.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员