The interaction of fibers in a viscous (Stokes) fluid plays a crucial role in industrial and biological processes, such as sedimentation, rheology, transport, cell division, and locomotion. Numerical simulations generally rely on slender body theory (SBT), an asymptotic, nonconvergent approximation whose error blows up as fibers approach each other. Yet convergent boundary integral equation (BIE) methods which completely resolve the fiber surface have so far been impractical due to the prohibitive cost of layer-potential quadratures in such high aspect-ratio 3D geometries. We present a high-order Nystr\"om quadrature scheme with aspect-ratio independent cost, making such BIEs practical. It combines centerline panels (each with a small number of poloidal Fourier modes), toroidal Green's functions, generalized Chebyshev quadratures, HPC parallel implementation, and FMM acceleration. We also present new BIE formulations for slender bodies that lead to well conditioned linear systems upon discretization. We test Laplace and Stokes Dirichlet problems, and Stokes mobility problems, for slender rigid closed fibers with (possibly varying) circular cross-section, at separations down to $1/20$ of the slender radius, reporting convergence typically to at least 10 digits. We use this to quantify the breakdown of numerical SBT for close-to-touching rigid fibers. We also apply the methods to time-step the sedimentation of 512 loops with up to $1.65$ million unknowns at around 7 digits of accuracy.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月21日
Arxiv
76+阅读 · 2022年3月26日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员