Tactile sensing holds great promise for enhancing manipulation precision and versatility, but its adoption in robotic hands remains limited due to high sensor costs, manufacturing and integration challenges, and difficulties in extracting expressive and reliable information from signals. In this work, we present a low-cost, easy-to-make, adaptable, and compact fingertip design for robotic hands that integrates multi-modal tactile sensors. We use strain gauge sensors to capture static forces and a contact microphone sensor to measure high-frequency vibrations during contact. These tactile sensors are integrated into a compact design with a minimal sensor footprint, and all sensors are internal to the fingertip and therefore not susceptible to direct wear and tear from interactions. From sensor characterization, we show that strain gauge sensors provide repeatable 2D planar force measurements in the 0-5 N range and the contact microphone sensor has the capability to distinguish contact material properties. We apply our design to three dexterous manipulation tasks that range from zero to full visual occlusion. Given the expressiveness and reliability of tactile sensor readings, we show that different tactile sensing modalities can be used flexibly in different stages of manipulation, solely or together with visual observations to achieve improved task performance. For instance, we can precisely count and unstack a desired number of paper cups from a stack with 100\% success rate which is hard to achieve with vision only.
翻译:暂无翻译