A common failure mode of density models trained as variational autoencoders is to model the data without relying on their latent variables, rendering these variables useless. Two contributing factors, the underspecification of the model and the looseness of the variational lower bound, have been studied separately in the literature. We weave these two strands of research together, specifically the tighter bounds of Monte-Carlo objectives and constraints on the mutual information between the observable and the latent variables. Estimating the mutual information as the average Kullback-Leibler divergence between the easily available variational posterior $q(z|x)$ and the prior does not work with Monte-Carlo objectives because $q(z|x)$ is no longer a direct approximation to the model's true posterior $p(z|x)$. Hence, we construct estimators of the Kullback-Leibler divergence of the true posterior from the prior by recycling samples used in the objective, with which we train models of continuous and discrete latents at much improved rate-distortion and no posterior collapse. While alleviated, the tradeoff between modelling the data and using the latents still remains, and we urge for evaluating inference methods across a range of mutual information values.


翻译:作为变式自动计算器而培训的密度模型的共同失败模式是,在不依赖其潜在变量的情况下模拟数据,使这些变量毫无用处。文献中分别研究了两个因素,即模型的特性不足和变式较低约束的松散。我们将这两组研究编织在一起,特别是蒙特-卡洛目标的严格界限和对可观测变量和潜在变量之间相互信息的限制。将相互信息估计为容易获得的变式后背-利差平均差值,而以前的数据与蒙特-卡洛目标不起作用,因为$(zx)美元不再直接接近模型真正的后背差值。因此,我们构建了真实后背-利差值与先前目标中所用回收样品之间的估计值,我们用高得多的率扭曲和无后背崩溃来培训连续和离差潜差模型。与此同时,我们仍在利用共同的贸易模型评估各种数据,同时在评估稳定度中,我们仍在评估共同的贸易范围。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
31+阅读 · 2021年6月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员