Detecting anomalous events in online computer systems is crucial to protect the systems from malicious attacks or malfunctions. System logs, which record detailed information of computational events, are widely used for system status analysis. In this paper, we propose LogBERT, a self-supervised framework for log anomaly detection based on Bidirectional Encoder Representations from Transformers (BERT). LogBERT learns the patterns of normal log sequences by two novel self-supervised training tasks and is able to detect anomalies where the underlying patterns deviate from normal log sequences. The experimental results on three log datasets show that LogBERT outperforms state-of-the-art approaches for anomaly detection.


翻译:在线计算机系统中的异常事件检测对于保护系统不受恶意攻击或故障影响至关重要。记录计算事件详细信息的系统日志被广泛用于系统状态分析。在本文中,我们提议LogBERT(一个基于来自变换器的双向编码器表示法的日志异常检测自监督框架),LogBERT通过两项新的自我监督培训任务了解正常日志序列的模式,并能够发现与正常日志序列不同的基本模式偏差的异常。三个日志数据集的实验结果表明,LogBERT(LogBERT)超越了异常检测的最新方法。

4
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
最新《Transformers模型》教程,64页ppt
专知会员服务
319+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月19日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
1+阅读 · 2021年4月28日
Few-shot Scene-adaptive Anomaly Detection
Arxiv
8+阅读 · 2020年7月15日
Learning Memory-guided Normality for Anomaly Detection
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
319+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月19日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员