Given a sequence of samples $x_1, \dots , x_k$ promised to be drawn from one of two distributions $X_0, X_1$, a well-studied problem in statistics is to decide $\textit{which}$ distribution the samples are from. Information theoretically, the maximum advantage in distinguishing the two distributions given $k$ samples is captured by the total variation distance between $X_0^{\otimes k}$ and $X_1^{\otimes k}$. However, when we restrict our attention to $\textit{efficient distinguishers}$ (i.e., small circuits) of these two distributions, exactly characterizing the ability to distinguish $X_0^{\otimes k}$ and $X_1^{\otimes k}$ is more involved and less understood. In this work, we give a general way to reduce bounds on the computational indistinguishability of $X_0$ and $X_1$ to bounds on the $\textit{information-theoretic}$ indistinguishability of some specific, related variables $\widetilde{X}_0$ and $\widetilde{X}_1$. As a consequence, we prove a new, tight characterization of the number of samples $k$ needed to efficiently distinguish $X_0^{\otimes k}$ and $X_1^{\otimes k}$ with constant advantage as \[ k = \Theta\left(d_H^{-2}\left(\widetilde{X}_0, \widetilde{X}_1\right)\right), \] which is the inverse of the squared Hellinger distance $d_H$ between two distributions $\widetilde{X}_0$ and $\widetilde{X}_1$ that are computationally indistinguishable from $X_0$ and $X_1$. Likewise, our framework can be used to re-derive a result of Halevi and Rabin (TCC 2008) and Geier (TCC 2022), proving nearly-tight bounds on how computational indistinguishability scales with the number of samples for arbitrary product distributions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员